| D008040 |
Genetic Linkage |
The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. |
Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic |
|
| D011110 |
Polymorphism, Genetic |
The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. |
Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic |
|
| D012150 |
Polymorphism, Restriction Fragment Length |
Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. |
RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms |
|
| D004247 |
DNA |
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). |
DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA |
|
| D004262 |
DNA Restriction Enzymes |
Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. |
Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA |
|
| D004274 |
DNA, Recombinant |
Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. |
Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes |
|
| D005258 |
Felty Syndrome |
A rare complication of rheumatoid arthritis with autoimmune NEUTROPENIA; and SPLENOMEGALY. |
Felty's Syndrome,Familial Felty Syndrome,Familial Felty's Syndrome,Rheumatoid Arthritis, Splenomegaly and Neutropenia,Familial Feltys Syndrome,Felty Syndrome, Familial,Felty's Syndrome, Familial,Feltys Syndrome,Syndrome, Familial Felty,Syndrome, Familial Felty's,Syndrome, Felty,Syndrome, Felty's |
|
| D005819 |
Genetic Markers |
A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. |
Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome |
|
| D006681 |
HLA-D Antigens |
Human immune-response or Class II antigens found mainly, but not exclusively, on B-lymphocytes and produced from genes of the HLA-D locus. They are extremely polymorphic families of glycopeptides, each consisting of two chains, alpha and beta. This group of antigens includes the -DR, -DQ and -DP designations, of which HLA-DR is most studied; some of these glycoproteins are associated with certain diseases, possibly of immune etiology. |
Antigens, HLA-D,Class II Human Antigens,HLA-Dw Antigens,Human Class II Antigens,Ia-Like Antigens, Human,Immune Response-Associated Antigens, Human,Immune-Associated Antigens, Human,Immune-Response Antigens, Human,HLA-D,HLA-Dw,Immune Response Associated Antigens, Human,Antigens, HLA D,Antigens, HLA-Dw,Antigens, Human Ia-Like,Antigens, Human Immune-Associated,Antigens, Human Immune-Response,HLA D Antigens,HLA Dw Antigens,Human Ia-Like Antigens,Human Immune-Associated Antigens,Human Immune-Response Antigens,Ia Like Antigens, Human,Immune Associated Antigens, Human,Immune Response Antigens, Human |
|
| D006683 |
HLA-DQ Antigens |
A group of the D-related HLA antigens found to differ from the DR antigens in genetic locus and therefore inheritance. These antigens are polymorphic glycoproteins comprising alpha and beta chains and are found on lymphoid and other cells, often associated with certain diseases. |
HLA-DC Antigens,HLA-MB Antigens,HLA-DC,HLA-DQ,HLA-DS,HLA-DS Antigens,HLA-LB,HLA-LB Antigens,HLA-MB,Antigens, HLA-DC,Antigens, HLA-DQ,Antigens, HLA-DS,Antigens, HLA-LB,Antigens, HLA-MB,HLA DC Antigens,HLA DQ Antigens,HLA DS Antigens,HLA LB Antigens,HLA MB Antigens |
|