A dual role for the histone methyltransferase PR-SET7/SETD8 and histone H4 lysine 20 monomethylation in the local regulation of RNA polymerase II pausing. 2014

Priya Kapoor-Vazirani, and Paula M Vertino
From the Department of Radiation Oncology and the Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322.

RNA polymerase II (Pol II) promoter-proximal pausing plays a critical role in postinitiation transcriptional regulation at many metazoan genes. We showed recently that histone H4 lysine 16 acetylation (H4K16Ac), mediated by the MSL complex, facilitates the release of paused Pol II. In contrast, H4 lysine 20 trimethylation (H4K20me3), mediated by SUV420H2, enforces Pol II pausing by inhibiting MSL recruitment. However, how the balance between H4K16Ac and H4K20me3 is locally regulated remains unclear. Here, we demonstrate that PR-SET7/SETD8, which monomethylates histone H4 lysine 20 (H4K20me1), controls both H4K16Ac and H4K20me3 and in doing so, regulates Pol II pausing dynamics. We find that PR-SET7-mediated H4K20me1 is necessary for the recruitment of the MSL complex, subsequent H4K16Ac, and release of Pol II into active elongation. Although dispensable for SUV420H2 recruitment, PR-SET7-mediated H4K20me1 is required for H4K20me3. Although depletion of SUV420H2 is sufficient to deplete H4K20me3 and relieve an H4K20me3-induced pause, pausing is maintained in the absence of PR-SET7 despite H4K20me3 depletion because of an inability to recruit the MSL complex in the absence of H4K20me1. These findings highlight the requirement for PR-SET7 and H4K20me1 in establishing both the H4K16Ac and H4K20me3 marks and point to a dual role in the local regulation of Pol II pausing.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011495 Histone-Lysine N-Methyltransferase An enzyme that catalyzes the methylation of the epsilon-amino group of lysine residues in proteins to yield epsilon mono-, di-, and trimethyllysine. Protein Lysine Methyltransferase,Protein Methylase III,Protein Methyltransferase III,Histone-Lysine Methyltransferase,Histone Lysine Methyltransferase,Histone Lysine N Methyltransferase,Methyltransferase, Histone-Lysine,Methyltransferase, Protein Lysine,N-Methyltransferase, Histone-Lysine
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

Priya Kapoor-Vazirani, and Paula M Vertino
April 2021, EMBO reports,
Priya Kapoor-Vazirani, and Paula M Vertino
June 2010, Journal of cellular biochemistry,
Priya Kapoor-Vazirani, and Paula M Vertino
August 2011, Trends in cell biology,
Priya Kapoor-Vazirani, and Paula M Vertino
November 2010, Nature cell biology,
Priya Kapoor-Vazirani, and Paula M Vertino
January 2009, Molecular and cellular biology,
Priya Kapoor-Vazirani, and Paula M Vertino
July 2008, Oncogene,
Priya Kapoor-Vazirani, and Paula M Vertino
July 2008, The Journal of biological chemistry,
Priya Kapoor-Vazirani, and Paula M Vertino
September 2016, Nucleic acids research,
Priya Kapoor-Vazirani, and Paula M Vertino
March 2013, Yi chuan = Hereditas,
Copied contents to your clipboard!