The action of excitatory amino acids on chick spinal cord neurones in culture. 1987

V Vlachová, and L Vyklický, and L Vyklický, and F Vyskocil
Institute of Physiology, Czechoslovak Academy of Sciences, Prague.

1. Membrane currents evoked by N-methyl-D-aspartate (NMDA), L-aspartate, L-glutamate, quisqualate and kainate were studied in cultured neurones from the embryonic chick spinal cord by the patch-clamp technique and by employing a quasi-step microperfusion technique. 2. Application of NMDA, aspartate, glutamate and quisqualate induced currents which exhibited an initial peak which declined to a plateau level with a time constant of 2 s and then remained constant or slowly decreased. The discontinuation of the application was followed by an after-current. The individual components of the responses were insensitive to TTX (2 X 10(-6) M) and were present in neurones which did not exhibit any sign of synaptic activity. The responses induced by kainate were monophasic and declined slowly during long-lasting application. 3. The responses induced by NMDA, aspartate and glutamate were voltage dependent, while those induced by kainate were linear between -80 and +80 mV. The equilibrium potential for all components of the responses to all excitatory amino acids was close to zero. 4. From dose-response curves the half-maximum effective dose (ED50) for glutamate and kainate was 3 X 10(-5) and 2 X 10(-4) M respectively. The Hill coefficients for the glutamate and the kainate were calculated to be 1.8 +/- 0.1 (n = 4) and 1.9 +/- 0.5 (n = 4) respectively. Thus two molecules may be interacting with each of the receptor-activated ion channels. 5. Interaction between kainate and quisqualate or kainate and NMDA was studied at both negative and positive holding potentials. No summation of the responses was found when kainate at concentrations close to those required for evoking the maximum response was applied simultaneously with quisqualate or NMDA. On the contrary, a diminution of the membrane currents was observed. A marked decrease in membrane currents was also observed when glutamate (10(-4) M) was applied simultaneously with aspartate (10(-4) M). 6. Glutamate-activated single-channel currents were recorded in the cell-attached configuration with electrodes filled with glutamate (20 microM) in five neurones and a conductance approximately 50 pS was found. 7. It is suggested that differences in the potency of the different excitatory amino acids as open-channel blockers may be one of the mechanisms which contribute to the diversity in the action of excitatory amino acids and that at least some of the effects of NMDA, aspartate, glutamate, quisqualate and kainate may be mediated by a common receptor-channel complex.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu

Related Publications

V Vlachová, and L Vyklický, and L Vyklický, and F Vyskocil
September 1984, The Journal of physiology,
V Vlachová, and L Vyklický, and L Vyklický, and F Vyskocil
January 1982, Experimental brain research,
V Vlachová, and L Vyklický, and L Vyklický, and F Vyskocil
January 1986, Advances in experimental medicine and biology,
V Vlachová, and L Vyklický, and L Vyklický, and F Vyskocil
April 1982, European journal of pharmacology,
V Vlachová, and L Vyklický, and L Vyklický, and F Vyskocil
November 1976, British journal of pharmacology,
V Vlachová, and L Vyklický, and L Vyklický, and F Vyskocil
March 1979, The Journal of physiology,
V Vlachová, and L Vyklický, and L Vyklický, and F Vyskocil
September 1994, The American journal of physiology,
V Vlachová, and L Vyklický, and L Vyklický, and F Vyskocil
March 1996, No to shinkei = Brain and nerve,
V Vlachová, and L Vyklický, and L Vyklický, and F Vyskocil
December 1982, Neuroscience letters,
V Vlachová, and L Vyklický, and L Vyklický, and F Vyskocil
December 1987, Brain research,
Copied contents to your clipboard!