Adenosine receptors: expression, function and regulation. 2014

Sandeep Sheth, and Rafael Brito, and Debashree Mukherjea, and Leonard P Rybak, and Vickram Ramkumar
Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA. ssheth@siumed.edu.

Adenosine receptors (ARs) comprise a group of G protein-coupled receptors (GPCR) which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF)-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012890 Sleep A readily reversible suspension of sensorimotor interaction with the environment, usually associated with recumbency and immobility. Sleep Habits,Sleeping Habit,Sleeping Habits,Habit, Sleep,Habit, Sleeping,Habits, Sleep,Habits, Sleeping,Sleep Habit
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D055503 Protein Multimerization The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS. Protein Dimerization,Protein Heteromultimerizaton,Protein Multimer Assembly,Protein Trimerization,Assembly, Protein Multimer,Dimerization, Protein,Heteromultimerizaton, Protein,Heteromultimerizatons, Protein,Multimer Assembly, Protein,Multimerization, Protein,Trimerization, Protein
D058906 Purinergic P1 Receptor Agonists Compounds that bind to and stimulate PURINERGIC P1 RECEPTORS. Adenosine Receptor Agonists,P1 Purinoceptor Agonists,Agonists, Adenosine Receptor,Agonists, P1 Purinoceptor,Purinoceptor Agonists, P1,Receptor Agonists, Adenosine

Related Publications

Sandeep Sheth, and Rafael Brito, and Debashree Mukherjea, and Leonard P Rybak, and Vickram Ramkumar
January 2011, Advances in pharmacology (San Diego, Calif.),
Sandeep Sheth, and Rafael Brito, and Debashree Mukherjea, and Leonard P Rybak, and Vickram Ramkumar
September 2008, Blood,
Sandeep Sheth, and Rafael Brito, and Debashree Mukherjea, and Leonard P Rybak, and Vickram Ramkumar
December 1990, Molecular immunology,
Sandeep Sheth, and Rafael Brito, and Debashree Mukherjea, and Leonard P Rybak, and Vickram Ramkumar
September 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Sandeep Sheth, and Rafael Brito, and Debashree Mukherjea, and Leonard P Rybak, and Vickram Ramkumar
March 1997, Hearing research,
Sandeep Sheth, and Rafael Brito, and Debashree Mukherjea, and Leonard P Rybak, and Vickram Ramkumar
January 1993, Life sciences,
Sandeep Sheth, and Rafael Brito, and Debashree Mukherjea, and Leonard P Rybak, and Vickram Ramkumar
January 1992, Trends in cardiovascular medicine,
Sandeep Sheth, and Rafael Brito, and Debashree Mukherjea, and Leonard P Rybak, and Vickram Ramkumar
February 2010, Journal of cellular biochemistry,
Sandeep Sheth, and Rafael Brito, and Debashree Mukherjea, and Leonard P Rybak, and Vickram Ramkumar
September 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Sandeep Sheth, and Rafael Brito, and Debashree Mukherjea, and Leonard P Rybak, and Vickram Ramkumar
October 1987, Agents and actions,
Copied contents to your clipboard!