Asialo-GM1-positive T killer cells are generated in F1 mice injected with parental spleen cells. 1988

C Knobloch, and G Dennert
University of Southern California, Comprehensive Cancer Center, Los Angeles 90033.

(C57BL/6 x DBA/2)F1 mice transplanted with parental C57BL/6 spleen cells become splenic chimeras, show donor antihost cytotoxic T cell activity, and lose their T cell-mediated, humoral, and natural immunity. Injection of anti-asialo-GM1 (ASGM1) into transplanted mice strongly suppresses splenic cytotoxic activity and causes a significant reduction of spleen cells expressing ASGM1, Thy-1, and Lyt-2. In vitro treatment of spleen cells from transplanted mice with antibody and complement shows that the cytotoxic effector cells are ASGM1+, Thy-1+, Lyt-2+, L3T4-, NK1.1-, and H-2d-, hence of donor origin. The cytotoxic effector cells are specific for H-2d targets and lack NK activity. In an attempt to explore whether in vivo elimination of the cytotoxic effector cells has any influence on splenic chimerism or humoral immunity, F1 mice injected with parental splenocytes were treated with anti-ASGM 1. Results show that this treatment eliminates a substantial proportion of cytotoxic effector cells but has no effect on splenic chimerism or restoration of humoral immunity. It therefore appears that cytotoxic effector cells are not primarily responsible for induction of chimerism or suppression of humoral immunity. In support of this injection of parental spleen cells with the nu/nu mutation induces killer cells in F1 mice but fails to induce splenic chimerism or immunosuppression. In contrast, injection of parental spleen cells with the bg/bg mutation generates both splenic chimerism and suppression of humoral immunity although their ability to generate cytotoxic effector cells in F1 hosts is seriously impaired and comparable to the cytotoxic potential of C57BL/6 nu/nu cells. It is concluded that the ASGM1 + cytotoxic T cells are not primarily responsible for splenic chimerism and suppression of humoral immunity and that the two effects are likely caused by parental cells with a different phenotype and function.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007165 Immunosuppression Therapy Deliberate prevention or diminution of the host's immune response. It may be nonspecific as in the administration of immunosuppressive agents (drugs or radiation) or by lymphocyte depletion or may be specific as in desensitization or the simultaneous administration of antigen and immunosuppressive drugs. Antirejection Therapy,Immunosuppression,Immunosuppressive Therapy,Anti-Rejection Therapy,Therapy, Anti-Rejection,Therapy, Antirejection,Anti Rejection Therapy,Anti-Rejection Therapies,Antirejection Therapies,Immunosuppression Therapies,Immunosuppressions,Immunosuppressive Therapies,Therapies, Immunosuppression,Therapies, Immunosuppressive,Therapy, Immunosuppression,Therapy, Immunosuppressive
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002678 Chimera An individual that contains cell populations derived from different zygotes. Hybrids,Chimeras,Hybrid
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D006028 Glycosphingolipids Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage) Asialoganglioside,Asialogangliosides,Glycosphingolipid,Sphingoglycolipid,Sphingoglycolipids

Related Publications

C Knobloch, and G Dennert
January 1997, Acta oto-laryngologica. Supplementum,
C Knobloch, and G Dennert
January 1986, Natural immunity and cell growth regulation,
C Knobloch, and G Dennert
May 1996, Japanese journal of cancer research : Gann,
C Knobloch, and G Dennert
January 1989, Natural immunity and cell growth regulation,
C Knobloch, and G Dennert
June 1961, The Journal of experimental medicine,
Copied contents to your clipboard!