Expression of rat brain excitatory amino acid receptors in Xenopus oocytes. 1987

R A Lampe, and L G Davis, and M J Gutnick
Medical Products Department, E. I. du Pont de Nemours and Company, Wilmington, DE 19898.

Xenopus laevis oocytes when injected with rat brain mRNA synthesize neuronal receptors that can be analyzed electrophysiologically. After a post-injection incubation period of 24-72 hours, L-glutamic acid, kainic acid and quisqualic acid caused a dose dependent (10-100 microM) depolarization of the oocyte membrane. The voltage and conductance changes associated with kainate activation were distinguishable from those seen for L-glutamate or quisqualate. There was no response to L-aspartate application and an inconsistent response to N-methyl-D-aspartate. Upon fractionation of the mRNA on sucrose gradients, transcripts greater than 2 Kb in length were obligatory for the synthesis of excitatory amino acid receptors. The electrophysiological response of injected oocytes exposed to L-glutamate was similar to that of native oocytes when exposed to muscarinic agents. This similarity may reflect the activation of the same ionophore and suggests that the active mRNA fraction for glutamate responsiveness either encodes for a binding protein that can be assembled along with native ion channels into the oocyte membrane or encodes for a glutamate binding site with a similar channel.

UI MeSH Term Description Entries
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

R A Lampe, and L G Davis, and M J Gutnick
December 1990, Molecular pharmacology,
R A Lampe, and L G Davis, and M J Gutnick
September 1988, Molecular pharmacology,
R A Lampe, and L G Davis, and M J Gutnick
January 1986, Advances in experimental medicine and biology,
R A Lampe, and L G Davis, and M J Gutnick
January 1991, Advances in experimental medicine and biology,
R A Lampe, and L G Davis, and M J Gutnick
April 1990, Neurochemical research,
R A Lampe, and L G Davis, and M J Gutnick
December 1988, Neuroscience letters,
R A Lampe, and L G Davis, and M J Gutnick
January 1987, Neuroscience letters,
R A Lampe, and L G Davis, and M J Gutnick
November 1996, Journal of neurochemistry,
Copied contents to your clipboard!