Tetrodotoxin-sensitive sodium current in native Xenopus oocytes. 1987

I Parker, and R Miledi
Department of Psychobiology, University of California, Irvine 92717.

Depolarization of oocytes of Xenopus laevis usually elicits mainly passive currents, and a calcium-dependent chloride current. However, oocytes obtained from some donors show, in addition, a transient inward current on depolarization to potentials beyond ca. -40 mV. This current is abolished by tetrodotoxin at submicromolar concentrations, and is prolonged by veratrine; thus, it probably arises through sodium channels of a type similar to those found in nerve and muscle cells. However, the kinetics of the sodium currents varied between oocytes from different donors; this result suggests that genes encoding different sodium channels may be expressed in oocytes from different donors. The presence of these native channels may complicate experiments to study the expression of exogenous sodium channels encoded by foreign messenger RNAs injected into the oocyte.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D014702 Veratrine A voltage-gated sodium channel activator. Cevane-3,4,12,14,16,17,20-heptol, 4,9-epoxy-, 3-(2-methyl-2-butenoate), (3beta(Z),4alpha,16beta)-,Cevadine
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

I Parker, and R Miledi
November 1992, Proceedings. Biological sciences,
I Parker, and R Miledi
November 1995, Biochimica et biophysica acta,
I Parker, and R Miledi
February 1994, The Journal of general physiology,
I Parker, and R Miledi
August 1997, The Journal of physiology,
I Parker, and R Miledi
January 1990, Proceedings of the Royal Society of London. Series B, Biological sciences,
I Parker, and R Miledi
September 1989, Proceedings of the National Academy of Sciences of the United States of America,
I Parker, and R Miledi
March 1995, Biochimica et biophysica acta,
Copied contents to your clipboard!