Proteomic approach to reveal the regulatory function of aconitase AcnA in oxidative stress response in the antibiotic producer Streptomyces viridochromogenes Tü494. 2014

Ewelina Michta, and Wei Ding, and Shaochun Zhu, and Kai Blin, and Hongqiang Ruan, and Rui Wang, and Wolfgang Wohlleben, and Yvonne Mast
Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany.

The aconitase AcnA from the phosphinothricin tripeptide producing strain Streptomyces viridochromogenes Tü494 is a bifunctional protein: under iron-sufficiency conditions AcnA functions as an enzyme of the tricarboxylic acid cycle, whereas under iron depletion it is a regulator of iron metabolism and oxidative stress response. As a member of the family of iron regulatory proteins (IRP), AcnA binds to characteristic iron responsive element (IRE) binding motifs and post-transcriptionally controls the expression of respective target genes. A S. viridochromogenes aconitase mutant (MacnA) has previously been shown to be highly sensitive to oxidative stress. In the present paper, we performed a comparative proteomic approach with the S. viridochromogenes wild-type and the MacnA mutant strain under oxidative stress conditions to identify proteins that are under control of the AcnA-mediated regulation. We identified up to 90 differentially expressed proteins in both strains. In silico analysis of the corresponding gene sequences revealed the presence of IRE motifs on some of the respective target mRNAs. From this proteome study we have in vivo evidences for a direct AcnA-mediated regulation upon oxidative stress.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D000154 Aconitate Hydratase An enzyme that catalyzes the reversible hydration of cis-aconitate to yield citrate or isocitrate. It is one of the citric acid cycle enzymes. EC 4.2.1.3. Aconitase,Citrate Hydro-Lyase,Isocitrate Hydro-Lyase,Citrate Hydrolyase,Citrate Hydro Lyase,Hydratase, Aconitate,Hydro-Lyase, Citrate,Hydro-Lyase, Isocitrate,Hydrolyase, Citrate,Isocitrate Hydro Lyase
D013302 Streptomyces A genus of bacteria that form a nonfragmented aerial mycelium. Many species have been identified with some being pathogenic. This genus is responsible for producing a majority of the ANTI-BACTERIAL AGENTS of practical value.
D015180 Electrophoresis, Gel, Two-Dimensional Electrophoresis in which a second perpendicular electrophoretic transport is performed on the separate components resulting from the first electrophoresis. This technique is usually performed on polyacrylamide gels. Gel Electrophoresis, Two-Dimensional,Polyacrylamide Gel Electrophoresis, Two-Dimensional,2-D Gel Electrophoresis,2-D Polyacrylamide Gel Electrophoresis,2D Gel Electrophoresis,2D PAGE,2D Polyacrylamide Gel Electrophoresis,Electrophoresis, Gel, 2-D,Electrophoresis, Gel, 2D,Electrophoresis, Gel, Two Dimensional,Polyacrylamide Gel Electrophoresis, 2-D,Polyacrylamide Gel Electrophoresis, 2D,Two Dimensional Gel Electrophoresis,2 D Gel Electrophoresis,2 D Polyacrylamide Gel Electrophoresis,Electrophoresis, 2-D Gel,Electrophoresis, 2D Gel,Electrophoresis, Two-Dimensional Gel,Gel Electrophoresis, 2-D,Gel Electrophoresis, 2D,Gel Electrophoresis, Two Dimensional,PAGE, 2D,Polyacrylamide Gel Electrophoresis, 2 D,Polyacrylamide Gel Electrophoresis, Two Dimensional,Two-Dimensional Gel Electrophoresis
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D053719 Tandem Mass Spectrometry A mass spectrometry technique using two (MS/MS) or more mass analyzers. With two in tandem, the precursor ions are mass-selected by a first mass analyzer, and focused into a collision region where they are then fragmented into product ions which are then characterized by a second mass analyzer. A variety of techniques are used to separate the compounds, ionize them, and introduce them to the first mass analyzer. For example, for in GC-MS/MS, GAS CHROMATOGRAPHY-MASS SPECTROMETRY is involved in separating relatively small compounds by GAS CHROMATOGRAPHY prior to injecting them into an ionization chamber for the mass selection. Mass Spectrometry-Mass Spectrometry,Mass Spectrometry Mass Spectrometry,Mass Spectrometry, Tandem
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D019032 Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis. Laser Desorption-Ionization Mass Spectrometry, Matrix-Assisted,MALD-MS,MALDI,Mass Spectrometry, Matrix-Assisted Laser Desorption-Ionization,Mass Spectroscopy, Matrix-Assisted Laser Desorption-Ionization,Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry,Spectroscopy, Mass, Matrix-Assisted Laser Desorption-Ionization,MALDI-MS,MS-MALD,SELDI-TOF-MS,Surface Enhanced Laser Desorption Ionization Mass Spectrometry,Laser Desorption Ionization Mass Spectrometry, Matrix Assisted,MALDI MS,Mass Spectrometry, Matrix Assisted Laser Desorption Ionization,Mass Spectroscopy, Matrix Assisted Laser Desorption Ionization,Matrix Assisted Laser Desorption Ionization Mass Spectrometry

Related Publications

Ewelina Michta, and Wei Ding, and Shaochun Zhu, and Kai Blin, and Hongqiang Ruan, and Rui Wang, and Wolfgang Wohlleben, and Yvonne Mast
December 2012, Environmental microbiology,
Ewelina Michta, and Wei Ding, and Shaochun Zhu, and Kai Blin, and Hongqiang Ruan, and Rui Wang, and Wolfgang Wohlleben, and Yvonne Mast
November 2005, Antimicrobial agents and chemotherapy,
Ewelina Michta, and Wei Ding, and Shaochun Zhu, and Kai Blin, and Hongqiang Ruan, and Rui Wang, and Wolfgang Wohlleben, and Yvonne Mast
November 1999, Journal of bacteriology,
Ewelina Michta, and Wei Ding, and Shaochun Zhu, and Kai Blin, and Hongqiang Ruan, and Rui Wang, and Wolfgang Wohlleben, and Yvonne Mast
January 1987, Journal of basic microbiology,
Ewelina Michta, and Wei Ding, and Shaochun Zhu, and Kai Blin, and Hongqiang Ruan, and Rui Wang, and Wolfgang Wohlleben, and Yvonne Mast
June 1998, FEMS microbiology letters,
Ewelina Michta, and Wei Ding, and Shaochun Zhu, and Kai Blin, and Hongqiang Ruan, and Rui Wang, and Wolfgang Wohlleben, and Yvonne Mast
March 1991, Applied microbiology and biotechnology,
Ewelina Michta, and Wei Ding, and Shaochun Zhu, and Kai Blin, and Hongqiang Ruan, and Rui Wang, and Wolfgang Wohlleben, and Yvonne Mast
December 2004, Applied and environmental microbiology,
Ewelina Michta, and Wei Ding, and Shaochun Zhu, and Kai Blin, and Hongqiang Ruan, and Rui Wang, and Wolfgang Wohlleben, and Yvonne Mast
August 1993, Journal of general microbiology,
Ewelina Michta, and Wei Ding, and Shaochun Zhu, and Kai Blin, and Hongqiang Ruan, and Rui Wang, and Wolfgang Wohlleben, and Yvonne Mast
July 2017, Microbiology (Reading, England),
Ewelina Michta, and Wei Ding, and Shaochun Zhu, and Kai Blin, and Hongqiang Ruan, and Rui Wang, and Wolfgang Wohlleben, and Yvonne Mast
May 2008, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!