Amiloride and amiloride analogs inhibit Na+/K+-transporting ATPase and Na+-coupled alanine transport in rat hepatocytes. 1988

E L Renner, and J R Lake, and E J Cragoe, and B F Scharschmidt
Department of Medicine and Liver Center, University of California School of Medicine, San Francisco.

Amiloride, a commonly used inhibitor of Na+-H+ exchange, has been shown to exhibit a variety of nonspecific effects. Recently, the more potent amiloride analogs, 5-(N,N-dimethyl)amiloride hydrochloride (DMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIA), have been used to control for the nonspecific effects of the parent compound. In the present study, we have explored the effects of these analogs on Na+/K+-transporting ATPase (Na+/K+-ATPase) and Na+-coupled alanine transport in primary rat hepatocyte cultures and rat liver plasma membranes, and we have compared the effects of these analogs with the effects of amiloride and ouabain. Amiloride, DMA, and EIA increased steady-state Na+ content and inhibited ouabain-sensitive 86Rb+ uptake in a reversible, concentration-dependent, ouabain-like manner, with estimated 50% inhibitory concentrations (IC50) of 3.0.10(-3) M, 5.2.10(-4) M, and 1.2.10(-4) M, respectively. Amiloride, DMA and EIA also inhibited ouabain-sensitive ATP hydrolysis in rat liver plasma membranes with similar potency (IC50 values of 2.2.10(-3) M, 2.2.10(-3) M, and 1.7.10(-4) M, respectively). In separate experiments, amiloride (5.10(-3) M), DMA (10(-3) M), and EIA (2.5.10(-4) M) decreased the uptake into hepatocytes of alanine by 20%, 61%, and 59%, respectively, and further studies with DMA (10(-3) M) demonstrated that this inhibition was largely due to a decrease in the Na+-dependent fraction of alanine uptake. These findings indicate that amiloride, DMA, and EIA inhibit hepatic Na+/K+-ATPase directly, reversibly, and with a relative rank order potency of EIA greater than DMA greater than amiloride. All three compounds also inhibit the hepatic uptake of alanine, and presumably could indirectly inhibit other Na+-coupled transport processes as well.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine

Related Publications

E L Renner, and J R Lake, and E J Cragoe, and B F Scharschmidt
June 1980, The Journal of biological chemistry,
E L Renner, and J R Lake, and E J Cragoe, and B F Scharschmidt
July 1981, The Journal of biological chemistry,
E L Renner, and J R Lake, and E J Cragoe, and B F Scharschmidt
November 1987, The American journal of physiology,
E L Renner, and J R Lake, and E J Cragoe, and B F Scharschmidt
November 2010, Biochemical and biophysical research communications,
E L Renner, and J R Lake, and E J Cragoe, and B F Scharschmidt
March 1991, The Journal of membrane biology,
E L Renner, and J R Lake, and E J Cragoe, and B F Scharschmidt
September 1988, Biochimie,
E L Renner, and J R Lake, and E J Cragoe, and B F Scharschmidt
July 1993, The American journal of physiology,
E L Renner, and J R Lake, and E J Cragoe, and B F Scharschmidt
March 1989, The American journal of physiology,
E L Renner, and J R Lake, and E J Cragoe, and B F Scharschmidt
October 1994, The American journal of physiology,
Copied contents to your clipboard!