On the analysis of substrate cycles in large metabolic systems. 1987

J Leiser, and J J Blum
Department of Physiology, Duke University Medical Center, Durham, NC 27710.

The simultaneous operation of paired, opposing reactions (substrate cycles) or parallel reactions (dual pathways) with seeming wastage of ATP is widespread in cellular metabolism. Analysis of such "futile" pathways has hitherto been limited to loci with only two or three interconnecting fluxes. We introduce here a method that allows straightforward analysis of more complex systems. The method involves the linear superposition of "fundamental" modes, one or more of which may be energetically wasteful. Decomposition of a flux pattern into such modes allows computation of the amount of free energy "wasted" at any locus. Appropriate normalizations of energy wastage yield a number of indices useful for assessing the energetic impact of futile pathways on the cell and for comparing the degree of regulation of substrate cycles or dual pathways under different metabolic conditions. This approach is applied to steady-state flux data obtained in the protozoan Tetrahymena pyriformis and in isolated rat hepatocytes under a variety of conditions.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013769 Tetrahymena pyriformis A species of ciliate protozoa used extensively in genetic research. Tetrahymena pyriformi,pyriformi, Tetrahymena
D050260 Carbohydrate Metabolism Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES. Metabolism, Carbohydrate
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

J Leiser, and J J Blum
January 1983, Biochemical Society transactions,
J Leiser, and J J Blum
August 1993, Biochemical Society transactions,
J Leiser, and J J Blum
January 1976, Biochemical Society symposium,
J Leiser, and J J Blum
December 2010, Current opinion in genetics & development,
J Leiser, and J J Blum
January 1978, Biochemical Society symposium,
J Leiser, and J J Blum
October 2010, Journal of theoretical biology,
J Leiser, and J J Blum
March 1986, European journal of biochemistry,
Copied contents to your clipboard!