Sodium current in single cells from bullfrog atrium: voltage dependence and ion transfer properties. 1987

R B Clark, and W Giles
Department of Medical Physiology, University of Calgary, Alberta, Canada.

1. Whole-cell and patch-clamp techniques (Hamill, Marty, Neher, Sakmann & Sigworth, 1981) have been used to make quantitative measurements of the transient inward sodium current (INa) in single cells from bullfrog atrium. This preparation is particularly suitable for the study of INa: (i) the current density is relatively low, (ii) the cells lack a transverse tubule system, (iii) isolated myocytes can be maintained at reduced temperatures (approximately 8-12 degrees C); therefore kinetics can be studied quantitatively. 2. INa was pharmacologically and kinetically isolated from other transmembrane currents by blocking ICa with CdCl2 (0.2-0.5 mM) or LaCl3 (5 x 10(-6) M), and by using only relatively short voltage-clamp depolarizations which did not activate IK (the delayed rectifier). 3. The voltage dependence of INa in bullfrog atrium is similar to that in amphibian node of Ranvier or fast skeletal muscle. The threshold for activation is approximately -50 mV. The peak of the INa vs. membrane potential relation is near -5 to -10 mV. The reversal potential in 'normal' (115 mM-Na+) Ringer solution is +59.0 mV (S.D. +/- 3.4, n = 10). Reduction of external Na+ concentration to one-third of normal resulted in an approximately -27 mV shift of the reversal potential, close to that expected for a highly Na+-selective conductance. 4. Steady-state inactivation of INa (h infinity), measured with a conventional two-pulse voltage-clamp protocol, spanned the membrane potential range from -90 to -50 mV. The potential dependence of h infinity was well described by a single Boltzmann function with half-inactivation at -71 mV and maximum slope of 6.0 mV. 5. Steady-state activation of INa (m infinity) was determined from fits of INa records to a Hodgkin-Huxley model. The potential dependence of m infinity was fitted to a Boltzmann function with half-activation at -33 mV and maximum slope of 9.5 mV. Thus at temperatures around 10 degrees C there was very little overlap of the m infinity and h infinity curves, and only very small steady-state 'window' currents are predicted. 6. The activation time constant, tau m, had a 'bell-shaped' dependence on membrane potential. The peak value of tau m was about 4.2 ms, at a membrane potential of -35 mV (9 degrees C). 7. The time course of inactivation of INa was consistently better described by the sum of two exponentials than by one exponential.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu

Related Publications

R B Clark, and W Giles
December 1986, The Journal of general physiology,
R B Clark, and W Giles
December 1986, The Journal of general physiology,
R B Clark, and W Giles
April 1989, Proceedings of the National Academy of Sciences of the United States of America,
R B Clark, and W Giles
November 1979, The Journal of physiology,
R B Clark, and W Giles
January 1976, Recent advances in studies on cardiac structure and metabolism,
R B Clark, and W Giles
November 1981, Neuroscience letters,
Copied contents to your clipboard!