Anatomical consequences of neonatal infraorbital nerve transection upon the trigeminal ganglion and vibrissa follicle nerves in the adult rat. 1988

B G Klein, and W E Renehan, and M F Jacquin, and R W Rhoades
Department of Neuroscience, New York College of Osteopathic Medicine of NYIT, Old Westbury 11568.

A large body of experimental literature has demonstrated that neonatal infraorbital nerve damage in rodents produces anatomical and/or functional alterations of the normal whisker representation in central trigeminal structures. Less is known about the organization of primary afferent components of the trigeminal system following this manipulation. Such information provides an important basis for interpreting the central changes observed following damage of infraorbital nerve fibers at birth. We have therefore examined the composition and order of peripheral innervation in the pathway from the trigeminal ganglion to the vibrissa follicles in adult rats subjected to unilateral neonatal infraorbital nerve transection. Electron microscopy was used to determine the number and diameter of myelinated and unmyelinated fibers in vibrissa follicle nerves of these animals. Wheat germ agglutinin-horseradish peroxidase and fluorescent retrograde tracers were employed to examine the number and diameter, as well as the topographic organization and branching, of ganglion cells innervating the vibrissae in these rats. The data presented below indicate that neonatal infraorbital nerve transection has the following consequences within the adult trigeminal nerve and ganglion: 1) an alteration of the gross morphology of vibrissal nerves, 2) a significant reduction in the average number (85.4%) and diameter (32.6%) of myelinated, but not unmyelinated, follicle nerve axons, 3) a significant decrease in the average number (36.8%) of trigeminal ganglion cells innervating vibrissa follicles, 4) no significant change in the distribution of ganglion cell diameters, 5) an increase in peripheral branching (1.8-fold) of these ganglion cell axons, and 6) an alteration of somatotopic order within the trigeminal ganglion. Taken together, these data indicate that neonatal infraorbital nerve transection produces a profound reorganization of the primary afferent component of the trigeminal neuraxis.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D005260 Female Females
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B G Klein, and W E Renehan, and M F Jacquin, and R W Rhoades
January 1991, Somatosensory & motor research,
B G Klein, and W E Renehan, and M F Jacquin, and R W Rhoades
August 1988, The Journal of comparative neurology,
B G Klein, and W E Renehan, and M F Jacquin, and R W Rhoades
September 1989, The Journal of comparative neurology,
B G Klein, and W E Renehan, and M F Jacquin, and R W Rhoades
April 1978, Journal of neurocytology,
B G Klein, and W E Renehan, and M F Jacquin, and R W Rhoades
January 1989, Somatosensory & motor research,
B G Klein, and W E Renehan, and M F Jacquin, and R W Rhoades
December 1991, Behavioural brain research,
B G Klein, and W E Renehan, and M F Jacquin, and R W Rhoades
January 1999, Journal fur Hirnforschung,
B G Klein, and W E Renehan, and M F Jacquin, and R W Rhoades
May 1993, The Journal of comparative neurology,
B G Klein, and W E Renehan, and M F Jacquin, and R W Rhoades
July 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!