Outward currents of single hippocampal cells obtained from the adult guinea-pig. 1987

R E Numann, and W J Wadman, and R K Wong
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston.

1. Neurones were isolated from the hippocampus of adult guinea-pigs by enzymatic and mechanical treatment. The electrophysiological properties of these cells were examined immediately after dissociation by intracellular recordings using low-resistance electrodes (2-5 M omega). 2. Pyramidal-shaped cells were identified visually. Intracellular recordings showed that these cells have input resistances ranging from 200 to 1300 M omega. Passive voltage responses to hyperpolarizing current injection were fitted by single exponentials decaying with time constants ranging from 15 to 60 ms. This suggests that the electrotonic structure of these cells is compact such that injected current elicited isopotential intracellular responses. 3. Outward currents activated by depolarization were examined in these cells using voltage-clamp techniques. The amplitude and the time course of the outward currents were profoundly affected by the holding potential. For cells held at -50 mV or more positive, depolarizing steps produced a slowly rising outward current. At holding potentials negative to -55 mV depolarizing pulses produced an additional early transient outward current followed by a slowly rising component which decayed gradually during sustained depolarizations. 4. The outward currents were separated by their kinetic properties and their sensitivity to cobalt (Co2+), tetraethylammonium (TEA) and 4-aminopyridine (4-AP). 5. The transient current peaked within 6 ms of the onset of depolarizing pulses. It decayed exponentially with a time constant of 20-40 ms. The amplitude of the current activated by a fixed depolarization increased gradually as the duration or the amplitude of the hyperpolarizing pre-pulse increased. The current activated by a fixed depolarization reached its half-maximal level when the hyperpolarizing pre-pulse was at -83 mV. 6. 4-AP exerted two actions on the transient current. Firstly, the time constant of the falling phase decreased by about a factor of two. Secondly, the current was blocked in a time- and voltage-dependent manner: the block increased when the hyperpolarizing pre-pulse lengthened. TEA, up to 10 mM, did not affect the amplitude of the transient current. Co2+ suppressed this current. The effects of Co2+ consisted of a shift to the positive direction of the voltage dependence of the current. 7. The delayed currents can be divided into Ca2+-dependent and Ca2+-independent components. The component persistent in the Co2+ solution (K-current) decayed slowly with maintained depolarization (time constant greater than 3 s).(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

R E Numann, and W J Wadman, and R K Wong
July 1997, The Journal of physiology,
R E Numann, and W J Wadman, and R K Wong
January 2005, The Journal of urology,
R E Numann, and W J Wadman, and R K Wong
August 1990, The Journal of physiology,
R E Numann, and W J Wadman, and R K Wong
June 2000, Zhonghua er bi yan hou ke za zhi,
R E Numann, and W J Wadman, and R K Wong
February 2001, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
R E Numann, and W J Wadman, and R K Wong
January 1988, The Japanese journal of physiology,
R E Numann, and W J Wadman, and R K Wong
April 1999, Journal of neurophysiology,
R E Numann, and W J Wadman, and R K Wong
February 2002, Chinese medical journal,
R E Numann, and W J Wadman, and R K Wong
October 1999, Lin chuang er bi yan hou ke za zhi = Journal of clinical otorhinolaryngology,
R E Numann, and W J Wadman, and R K Wong
April 1989, The Journal of physiology,
Copied contents to your clipboard!