Substance P in the rat nucleus accumbens: ultrastructural localization in axon terminals and their relation to dopaminergic afferents. 1988

V M Pickel, and T H Joh, and J Chan
Division of Neurobiology, Cornell University Medical College, New York, NY 10021.

Dual labeling electron microscopic immunocytochemistry was used to investigate the cellular substrate for functional interactions between substance P (SP) and dopamine in the rat nucleus accumbens. Coronal vibratome sections from acrolein-fixed brains were sequentially processed for the localization of: (1) a rat monoclonal antiserum against SP identified by the peroxidase--anti-peroxidase immunocytochemical method, and (2) a rabbit polyclonal antiserum against tyrosine hydroxylase (TH) identified by immunoautoradiography. The monoclonal rat antiserum recognized principally SP, but also exhibited cross-reactivity with certain other tachykinins such as substance K. Terminals showing SP-like immunoreactivity (SPLI) were 0.2-1.5 microns in diameter and contained numerous small (30-40 nm), round vesicles; one or more large (80-150 nm), dense-core vesicles; and an occasional membrane-bound multivesicular body. From a total of 114 SP-labeled terminals that were quantitatively analyzed, 30.1% formed symmetric synapses with dendrites; whereas only 8% formed asymmetric junctions with dendritic spines. Terminals showing SPLI also occasionally formed junctions with dendrites receiving synaptic input from other terminals that were similarly labeled for the peptide or from terminals immunoautoradiographically labeled for TH. In contrast to the low frequency of postsynaptic relationships, 39.8% of the terminals containing SPLI showed close associations with other unlabeled or TH-labeled terminal or preterminal axons. The axonic contacts were characterized by equally spaced membranes that were not separated by glial processes. Within the terminals containing SPLI, vesicles were located near the axonic contacts; whereas vesicles in unlabeled terminals were located more distally with respect to these appositions. We conclude that in the rat nucleus accumbens SP or a closely related tachykinin subserves principally inhibitory functions at postsynaptic sites as indicated by the prominence of symmetric junctions. The abundance of axonic associations and sparsity of convergent input from TH- and SP-labeled terminals at closely spaced sites on dendrites supports the concepts that a SP-like tachykinin also may modulate the release of dopamine through direct or indirect presynaptic mechanisms. The possibility that there may be more extensive postsynaptic associations through convergence at widely spaced sites on common neurons is discussed.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012686 Septal Nuclei Neural nuclei situated in the septal region. They have afferent and cholinergic efferent connections with a variety of FOREBRAIN and BRAIN STEM areas including the HIPPOCAMPAL FORMATION, the LATERAL HYPOTHALAMUS, the tegmentum, and the AMYGDALA. Included are the dorsal, lateral, medial, and triangular septal nuclei, septofimbrial nucleus, nucleus of diagonal band, nucleus of anterior commissure, and the nucleus of stria terminalis. Bed Nucleus of Stria Terminalis,Nucleus of Anterior Commissure,Nucleus of Diagonal Band,Nucleus of Stria Terminalis,Septofimbrial Nucleus,Dorsal Septal Nucleus,Lateral Septal Nucleus,Lateral Septum Nucleus,Medial Septal Nucleus,Medial Septum Nucleus,Nucleus Interstitialis Striae Terminalis,Nucleus Lateralis Septi,Nucleus Septalis Lateralis,Nucleus Septi Lateralis,Nucleus Striae Terminalis,Nucleus Triangularis Septi,Nucleus of the Stria Terminalis,Septal Nuclear Complex,Triangular Septal Nucleus,Anterior Commissure Nucleus,Complex, Septal Nuclear,Complices, Septal Nuclear,Diagonal Band Nucleus,Laterali, Nucleus Septalis,Laterali, Nucleus Septi,Lateralis Septi, Nucleus,Lateralis Septus, Nucleus,Lateralis, Nucleus Septalis,Lateralis, Nucleus Septi,Nuclear Complex, Septal,Nuclear Complices, Septal,Nuclei, Septal,Nucleus Lateralis Septus,Nucleus Septalis Laterali,Nucleus Septi Laterali,Nucleus Striae Terminali,Nucleus Triangularis Septus,Nucleus, Dorsal Septal,Nucleus, Lateral Septal,Nucleus, Lateral Septum,Nucleus, Medial Septal,Nucleus, Medial Septum,Nucleus, Septofimbrial,Nucleus, Triangular Septal,Septal Nuclear Complices,Septal Nucleus, Dorsal,Septal Nucleus, Lateral,Septal Nucleus, Medial,Septal Nucleus, Triangular,Septalis Laterali, Nucleus,Septalis Lateralis, Nucleus,Septi Laterali, Nucleus,Septi Lateralis, Nucleus,Septi, Nucleus Lateralis,Septi, Nucleus Triangularis,Septum Nucleus, Lateral,Septum Nucleus, Medial,Septus, Nucleus Lateralis,Septus, Nucleus Triangularis,Stria Terminalis Nucleus,Striae Terminali, Nucleus,Striae Terminalis, Nucleus,Terminali, Nucleus Striae,Terminalis, Nucleus Striae,Triangularis Septi, Nucleus,Triangularis Septus, Nucleus
D013373 Substance P An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses. Euler-Gaddum Substance P,Hypothalamic Substance P,SP(1-11),Euler Gaddum Substance P,Substance P, Euler-Gaddum,Substance P, Hypothalamic

Related Publications

V M Pickel, and T H Joh, and J Chan
July 2000, The Journal of comparative neurology,
V M Pickel, and T H Joh, and J Chan
February 1982, Brain research,
V M Pickel, and T H Joh, and J Chan
January 1998, European journal of histochemistry : EJH,
Copied contents to your clipboard!