Changes in heparan sulfate correlate with increased glomerular permeability. 1988

G C Groggel, and J Stevenson, and P Hovingh, and A Linker, and W A Border
Department of Medicine, University of Utah School of Medicine, Salt Lake City.

The glomerular capillary wall functions as both a size-selective and charge-selective barrier. Heparan sulfate is known to be an important component of the charge-selective barrier to filtration of polyanions. We studied the alterations in both the charge and size selectivity barriers in a model of experimental membranous nephropathy in the rabbit. The fractional clearance of both charged and uncharged dextrans compared to inulin was measured. Sulfate incorporation into glycosaminoglycans was measured and the glomerular heparan sulfate was isolated and biochemically characterized. Membranous nephropathy in the rabbit was induced with daily injections of cationic bovine serum albumin. After three weeks of injection animals had 735 +/- 196 mg/24 hours of protein excretion. There was no change in [35S] incorporation in 24 hours by experimental animals, 440 +/- 91 DPM/mg dry weight of glomeruli, N = 9 versus 410 +/- 98, N = 11 in controls. The percentage of [35S] incorporated into heparan sulfate versus chondroitin sulfate was decreased, 60% +/- 3 versus 79% +/- 2, P less than 0.001. Heparan sulfate from membranous nephropathy eluted from ion exchange chromatography in a lower molarity salt, indicating a lower effective charge. Fractional clearance of neutral dextrans was significantly increased in membranous nephropathy for dextrans greater than 48 A, while fractional clearance of dextran sulfates was significantly increased compared to controls for dextrans greater than 32 A. Thus, in membranous nephropathy there is loss of both charge selectivity and size selectivity. The loss of charge selectivity correlated with a change in the structure of the glomerular heparan sulfate.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007444 Inulin A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D011507 Proteinuria The presence of proteins in the urine, an indicator of KIDNEY DISEASES. Proteinurias
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005919 Glomerular Filtration Rate The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance. Filtration Rate, Glomerular,Filtration Rates, Glomerular,Glomerular Filtration Rates,Rate, Glomerular Filtration,Rates, Glomerular Filtration
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D006497 Heparitin Sulfate A heteropolysaccharide that is similar in structure to HEPARIN. It accumulates in individuals with MUCOPOLYSACCHARIDOSIS. Heparan Sulfate,Sulfate, Heparan,Sulfate, Heparitin

Related Publications

G C Groggel, and J Stevenson, and P Hovingh, and A Linker, and W A Border
September 1987, The American journal of pathology,
G C Groggel, and J Stevenson, and P Hovingh, and A Linker, and W A Border
November 2019, American journal of physiology. Renal physiology,
G C Groggel, and J Stevenson, and P Hovingh, and A Linker, and W A Border
March 2004, Kidney international,
G C Groggel, and J Stevenson, and P Hovingh, and A Linker, and W A Border
August 1980, The Journal of cell biology,
G C Groggel, and J Stevenson, and P Hovingh, and A Linker, and W A Border
November 2020, Matrix biology : journal of the International Society for Matrix Biology,
G C Groggel, and J Stevenson, and P Hovingh, and A Linker, and W A Border
January 2008, American journal of physiology. Renal physiology,
G C Groggel, and J Stevenson, and P Hovingh, and A Linker, and W A Border
December 1986, Kidney international,
G C Groggel, and J Stevenson, and P Hovingh, and A Linker, and W A Border
July 2017, Lupus,
G C Groggel, and J Stevenson, and P Hovingh, and A Linker, and W A Border
March 1979, Proceedings of the National Academy of Sciences of the United States of America,
G C Groggel, and J Stevenson, and P Hovingh, and A Linker, and W A Border
June 2005, Journal of the American Society of Nephrology : JASN,
Copied contents to your clipboard!