Expression of herpes simplex virus type 1 glycoprotein D deletion mutants in mammalian cells. 1988

G H Cohen, and W C Wilcox, and D L Sodora, and D Long, and J Z Levin, and R J Eisenberg
Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6003.

Glycoprotein D (gD) is a viron envelope component of herpes simplex virus types 1 and 2. We have previously defined seven monoclonal antibody (MAb) groups which recognize distinct epitopes on the mature gD-1 protein of 369 amino acids. MAb groups VII, II, and V recognize continuous epitopes at residues 11-19, 272-279, and 340-356, respectively. MAb groups I, III, IV, and VI recognize discontinuous epitopes. Recent studies have focused on epitopes I, III, and VI. Using truncated forms of gD generated by recombinant DNA methods and proteolysis, epitopes III, IV, and VI were located within amino acids 1-233. A portion of discontinuous epitope I was located in a region within residues 233-275. For this study, we used recombinant DNA methods to create mutations in the gD-1 gene and studied the effects of those mutations on gD as expressed in mammalian cells. Plasmid pRE4, containing the coding sequence of gD-1 and the Rous sarcoma virus long terminal repeat promoter, was transfected into mammalian cells. The expressed protein, gD-1-(pRE4), was identical in size and antigenic properties to gD-1 from infected cells. Six in-frame deletion mutations were subsequently constructed by using restriction enzymes to excise portions of the gD-1 gene. Plasmids carrying these mutated forms were transfected into cells, and the corresponding proteins were examined at 48 h posttransfection for antigenicity and glycosylation patterns. Three deletions of varying size were located downstream of residue 233. Analysis of these mutants showed that amino acids within the region 234-244 were critical for binding of DL11 (group I), but not for other MAb groups. Three other deletion mutants lost all ability to bind MAbs which recognize discontinuous epitopes. In addition, much of the gD expressed by these mutants was observed to migrate as high-molecular-weight aggregated forms in nondenaturing gels. Each of these mutations involved the loss of a cysteine residue, suggesting that disulfide linkages play an essential role in the formation of discontinuous epitopes. The extent of glycosylation of the mutant gD molecules accumulated at 48 h posttransfection suggested altered carbohydrate processing. In one case, there was evidence for increased O-linked glycosylation. Those proteins which had lost a cysteine residue as part of the deletion did not accumulate molecules processed beyond the high-mannose stage. The results suggest that carbohydrate processing during synthesis of gD is very sensitive to alterations in structure, particularly changes involving cysteine residues.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

G H Cohen, and W C Wilcox, and D L Sodora, and D Long, and J Z Levin, and R J Eisenberg
December 1982, The Journal of general virology,
G H Cohen, and W C Wilcox, and D L Sodora, and D Long, and J Z Levin, and R J Eisenberg
January 2004, Acta virologica,
G H Cohen, and W C Wilcox, and D L Sodora, and D Long, and J Z Levin, and R J Eisenberg
February 1987, Journal of virology,
G H Cohen, and W C Wilcox, and D L Sodora, and D Long, and J Z Levin, and R J Eisenberg
March 1990, The Journal of general virology,
G H Cohen, and W C Wilcox, and D L Sodora, and D Long, and J Z Levin, and R J Eisenberg
February 1985, Journal of virology,
G H Cohen, and W C Wilcox, and D L Sodora, and D Long, and J Z Levin, and R J Eisenberg
August 1996, Journal of neurovirology,
G H Cohen, and W C Wilcox, and D L Sodora, and D Long, and J Z Levin, and R J Eisenberg
December 2002, Molecules and cells,
G H Cohen, and W C Wilcox, and D L Sodora, and D Long, and J Z Levin, and R J Eisenberg
November 1983, The Journal of general virology,
G H Cohen, and W C Wilcox, and D L Sodora, and D Long, and J Z Levin, and R J Eisenberg
December 1990, Zentralblatt fur Bakteriologie : international journal of medical microbiology,
G H Cohen, and W C Wilcox, and D L Sodora, and D Long, and J Z Levin, and R J Eisenberg
October 1982, Science (New York, N.Y.),
Copied contents to your clipboard!