Calcium currents in isolated canine airway smooth muscle cells. 1988

M I Kotlikoff
Department of Animal Biology, University of Pennsylvania, Philadelphia 19104-6046.

Canine tracheal smooth muscle cells were enzymatically dissociated, and individual myocytes were voltage clamped through use of the whole cell, patch-clamp method. Cells dialyzed with solutions high in potassium and bathed in physiological saline demonstrated brief inward currents, followed by large outward currents that inactivated very slowly. When outward currents were blocked, a voltage-activated inward current was observed that activated with depolarizations to voltages positive to -45 mV, with an apparent reversal potential greater than 110 mV, and a peak current at 15 mV. This current was identified as a calcium current on the basis of 1) its presence under conditions in which calcium was the only permeant cation, 2) the lack of a blocking effect of 2 microM tetrodotoxin, and 3) block of the current by Mn2+, Cd2+, and CO2+. Increases in external calcium concentration from 2 to 20 mM resulted in an increase in current amplitude and a shift of voltage activation toward more positive potentials. The current displayed a rapid inactivation phase with a time constant of 16-52 ms, which was well fit by a single exponential. Steady-state inactivation of the calcium current was sigmoidal, with a voltage of half inactivation of -21 mV in 20 mM Ca2+. The principle component of the calcium current was further identified as a transient current on the basis of its rapid inactivation, current-voltage characteristics, and relative insensitivity to dihydropyridine calcium channel blocking agents.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004095 Dihydropyridines Pyridine moieties which are partially saturated by the addition of two hydrogen atoms in any position.
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical

Related Publications

M I Kotlikoff
May 1992, The American journal of physiology,
M I Kotlikoff
April 1989, Journal of applied physiology (Bethesda, Md. : 1985),
M I Kotlikoff
January 2017, Methods in molecular biology (Clifton, N.J.),
M I Kotlikoff
March 1994, Canadian journal of physiology and pharmacology,
M I Kotlikoff
March 1986, The Journal of physiology,
M I Kotlikoff
August 1990, The Journal of physiology,
M I Kotlikoff
March 1992, The American journal of physiology,
M I Kotlikoff
October 1991, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!