Na transport stimulation by novobiocin: transepithelial parameters and evaluation of ENa. 1988

R Rick, and A Dörge, and E Sesselmann
Physiologisches Institut, Universität München, Federal Republic of Germany.

The action of the antibiotic novobiocin on transepithelial Na transport was studied in isolated skins obtained from two different frog species. In Rana esculenta addition of novobiocin to the outer bath (1 mM) resulted in a sustained and reversible stimulation of the short-circuit current, transepithelial potential, and transepithelial conductance. Similar, though more variable and much less pronounced changes were observed in Rana temporaria. In the presence of amiloride (0.1 mM) novobiocin had no effect on any of the investigated transport parameters and all novobiocin induced changes were fully reversed when amiloride was given subsequently. At reduced external Na concentration or low pH the action of novobiocin was found to be greatly attenuated. In the presence of novobiocin an increased affinity to amiloride and a linearization of the transepithelial current-voltage relationship was observed. The results are consistent with the view that novobiocin increases the Na permeability of the outer membrane, possibly by an attenuation of an Na self-inhibition mechanism. In addition, the driving force of transepithelial Na transport was estimated by means of novobiocin. Several different methods were employed, providing varying results. As shown in an Appendix, for the most part the discrepancies can be explained by changes in the intracellular Na and K concentration. In some cases, novobiocin induced large secondary increases in the skin conductance which can be referred to an increased Cl permeability.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009675 Novobiocin An antibiotic compound derived from Streptomyces niveus. It has a chemical structure similar to coumarin. Novobiocin binds to DNA gyrase, and blocks adenosine triphosphatase (ATPase) activity. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p189) Crystallinic Acid,Streptonivicin,Novobiocin Calcium,Novobiocin Sodium,Novobiocin, Monosodium Salt,Calcium, Novobiocin,Monosodium Salt Novobiocin,Sodium, Novobiocin
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R Rick, and A Dörge, and E Sesselmann
December 1976, The American journal of physiology,
R Rick, and A Dörge, and E Sesselmann
March 1978, The Journal of physiology,
R Rick, and A Dörge, and E Sesselmann
January 1981, Annals of the New York Academy of Sciences,
R Rick, and A Dörge, and E Sesselmann
October 1986, The American journal of physiology,
R Rick, and A Dörge, and E Sesselmann
February 1996, The American journal of physiology,
R Rick, and A Dörge, and E Sesselmann
May 1974, The American journal of physiology,
R Rick, and A Dörge, and E Sesselmann
November 1996, The Journal of steroid biochemistry and molecular biology,
R Rick, and A Dörge, and E Sesselmann
January 1981, Progress in clinical and biological research,
R Rick, and A Dörge, and E Sesselmann
March 1983, Journal of cellular physiology,
Copied contents to your clipboard!