Crowding effects on the temperature and pressure dependent structure, stability and folding kinetics of Staphylococcal Nuclease. 2014

M Erlkamp, and S Grobelny, and R Winter
TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, D-44221 Dortmund, Germany. roland.winter@tu-dortmund.de.

FT-IR spectroscopic, small-angle X-ray scattering and calorimetric measurements have been applied to explore the effect of the macromolecular crowder agent Ficoll on the temperature- and pressure-dependent stability diagram and folding reaction of the protein Staphylococcal Nuclease (SNase). Additionally, we compare the experimental data with approximate theoretical predictions. We found that temperature- and pressure-induced equilibrium unfolding of SNase is markedly shifted to higher temperatures and pressures in 30 wt% Ficoll solutions. The structure of the unfolded state ensemble does not seem to be strongly influenced in the presence of the crowder. Self-crowding effects have been found to become important at SNase concentrations above 10 wt% only. Our kinetic results show that the folding rate of SNase decreases markedly in the presence of Ficoll. These results indicate that besides the commonly encountered excluded volume effect, other factors need to be considered when assessing confinement effects on protein folding kinetics. Among those, crowder-induced viscosity changes seem to be prominent.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D005362 Ficoll A sucrose polymer of high molecular weight.
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular

Related Publications

M Erlkamp, and S Grobelny, and R Winter
February 1970, Science (New York, N.Y.),
M Erlkamp, and S Grobelny, and R Winter
March 1993, Biochemistry,
M Erlkamp, and S Grobelny, and R Winter
February 2001, Biochemistry,
M Erlkamp, and S Grobelny, and R Winter
October 2021, The journal of physical chemistry. B,
M Erlkamp, and S Grobelny, and R Winter
March 2001, Biophysical journal,
M Erlkamp, and S Grobelny, and R Winter
July 2012, Biochimica et biophysica acta,
M Erlkamp, and S Grobelny, and R Winter
February 1999, Biochemistry,
M Erlkamp, and S Grobelny, and R Winter
July 2016, The journal of physical chemistry. B,
M Erlkamp, and S Grobelny, and R Winter
June 2017, Physical chemistry chemical physics : PCCP,
M Erlkamp, and S Grobelny, and R Winter
March 1999, Biochemistry,
Copied contents to your clipboard!