Selective block of calcium current by lanthanum in single bullfrog atrial cells. 1988

R D Nathan, and K Kanai, and R B Clark, and W Giles
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.

A single suction microelectrode voltage-clamp technique was used to study the actions of lanthanum ions (La3+) on ionic currents in single cells isolated from bullfrog right atrium. La3+, added as LaCl3, blocked the "slow" inward Ca2+ current (ICa) in a dose-dependent fashion; 10(-5) M produced complete inhibition. This effect was best fitted by a dose-response curve that was calculated assuming 1:1 binding of La3+ to a site having a dissociation constant of 7.5 x 10(-7) M. La3+ block was reversed (to 90% of control ICa) following washout and, in the presence of 10(-5) M La3+, was antagonized by raising the Ca2+ concentration from 2.5 to 7.5 mM (ICa recovered to 56% of the control). However, the latter effect took approximately 1 h to develop. Concentrations of La3+ that reduced ICa by 12-67%, 0.1-1.5 x 10(-6) M, had no measurable effect upon the voltage dependence of steady state ICa inactivation, which suggest that at these concentrations there are no significant surface-charge effects of La3+ on this gating mechanism. Three additional findings indicate that doses of La3+ that blocked ICa failed to produce nonspecific effects: (a) 10(-5) M La3+ had no measurable effect on the time-independent inwardly rectifying current, IK1; (b) the same concentration had no effect on the kinetics, amplitude, or voltage dependence of a time- and voltage-dependent K+ current, IK; and (c) 10(-4) M La3+ did not alter the size of the tetrodotoxin-sensitive inward Na+ current, INa, or the voltage dependence of its steady state inactivation. Higher concentrations (0.5-1.0 mM) reduced both IK1 and IK, and shifted the steady state activation curve for IK toward more positive potentials, presumably by reducing the external surface potential. Our results suggest that at a concentration of less than or equal to 10(-5) M, La3+ inhibits ICa selectively by direct blockade of Ca channels rather than by altering the external surface potential. At higher concentrations, La3+ exhibits nonspecific effects, including neutralization of negative external surface charge and inhibition of other time- and voltage-dependent ionic currents.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007811 Lanthanum The prototypical element in the rare earth family of metals. It has the atomic symbol La, atomic number 57, and atomic weight 138.91. Lanthanide ion is used in experimental biology as a calcium antagonist; lanthanum oxide improves the optical properties of glass.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation

Related Publications

R D Nathan, and K Kanai, and R B Clark, and W Giles
May 1998, Biophysical journal,
R D Nathan, and K Kanai, and R B Clark, and W Giles
November 1984, Japanese journal of pharmacology,
R D Nathan, and K Kanai, and R B Clark, and W Giles
February 1983, The Journal of general physiology,
R D Nathan, and K Kanai, and R B Clark, and W Giles
February 1991, The American journal of physiology,
R D Nathan, and K Kanai, and R B Clark, and W Giles
January 2001, Journal of anesthesia,
R D Nathan, and K Kanai, and R B Clark, and W Giles
July 1981, The Journal of general physiology,
R D Nathan, and K Kanai, and R B Clark, and W Giles
March 1996, The Journal of physiology,
R D Nathan, and K Kanai, and R B Clark, and W Giles
December 1991, The American journal of physiology,
R D Nathan, and K Kanai, and R B Clark, and W Giles
May 2000, Neuroscience letters,
R D Nathan, and K Kanai, and R B Clark, and W Giles
June 1988, European journal of pharmacology,
Copied contents to your clipboard!