Sensory transmitters regulate intracellular calcium in dorsal horn neurons. 1988

M D Womack, and A B MacDermott, and T M Jessell
Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115.

Primary afferent terminals in the dorsal horn of the spinal cord release excitatory amino acid and peptide transmitters that initiate the central processing of nociceptive information. The postsynaptic actions of amino acid transmitters on spinal neurons have been well characterized, but the cellular basis of peptide actions remains unclear. Substance P is the best characterized of the peptides present in sensory neurons and has been shown to depolarize dorsal horn neurons and to facilitate nociceptive reflexes. To determine the mechanisms by which substance P contributes to afferent synaptic transmission, we have monitored the levels of intracellular calcium in single isolated rat dorsal horn neurons and report that substance P can produce a prolonged elevation in calcium concentration by mobilizing its release from intracellular stores. This elevation may contribute to the long-term changes in the excitable properties of dorsal horn neurons that occur following afferent fibre stimulation. We have also found that L-glutamate elevates intracellular calcium in substance P-sensitive dorsal horn neurons by increasing calcium influx. These results provide a direct demonstration of intracellular calcium changes in response to neuropeptides in mammalian central neurons. They also indicate that there is convergent regulation of intracellular calcium in dorsal horn neurons by two different classes of sensory transmitters that are co-released from the same afferent terminals.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013373 Substance P An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses. Euler-Gaddum Substance P,Hypothalamic Substance P,SP(1-11),Euler Gaddum Substance P,Substance P, Euler-Gaddum,Substance P, Hypothalamic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

M D Womack, and A B MacDermott, and T M Jessell
September 2007, Journal of neuroscience methods,
M D Womack, and A B MacDermott, and T M Jessell
July 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M D Womack, and A B MacDermott, and T M Jessell
October 2004, Trends in neurosciences,
M D Womack, and A B MacDermott, and T M Jessell
January 2003, Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994),
M D Womack, and A B MacDermott, and T M Jessell
October 1989, Brain research,
M D Womack, and A B MacDermott, and T M Jessell
January 2017, Molecular pain,
M D Womack, and A B MacDermott, and T M Jessell
August 2009, Anesthesiology,
Copied contents to your clipboard!