Lipid content and metabolism of human keratinocyte cultures grown at the air-medium interface. 1988

M L Williams, and B E Brown, and D J Monger, and S Grayson, and P M Elias
Dermatology Service, Veterans Administration Medical Center, San Francisco, California 94121.

The differentiation of human keratinocytes in most culture systems is incomplete; e.g., lamellar bodies, the characteristic lipid-delivery organelles of epidermis, are not present. Moreover, their lipid profile does not reflect the distinctive composition found in cornifying epidermis. In contrast, keratinocytes that grow at an air-medium interface exhibit more complete differentiation. In this study, we compared the elaboration of lamellar bodies, the lipid content, and the lipid metabolism of human keratinocytes, cultured both under standard immersed conditions and after lifting to an air-medium interface. Whereas submerged cultures neither elaborated lamellar bodies nor displayed a lipid distribution characteristic of cornifying epidermis, lifted cultures displayed advanced cornification, elaborated lamellar bodies which were deposited in intercellular domains, and a lipid profile more typical of cornifying epidermis. Moreover, lipid biosynthesis was 5-10-fold more active in lifted than in immersed cultures, and was not inhibited by exogenous lipoproteins. These findings are consistent with recent studies that demonstrate both high rates of lipogenesis in differentiating layers of the epidermis as well as autonomy of lipogenesis from the influence of circulating lipoproteins. Thus, the lipid content and metabolism of human keratinocyte cultures, grown at an air-medium interface, demonstrate features that simulate the epidermis.

UI MeSH Term Description Entries
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000078404 Epidermal Cells Cells from the outermost, non-vascular layer (EPIDERMIS) of the skin. Epidermal Cell,Epidermic Cells,Cell, Epidermal,Cell, Epidermic,Cells, Epidermic,Epidermic Cell
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

M L Williams, and B E Brown, and D J Monger, and S Grayson, and P M Elias
March 1991, The Journal of investigative dermatology,
M L Williams, and B E Brown, and D J Monger, and S Grayson, and P M Elias
July 1989, The Journal of investigative dermatology,
M L Williams, and B E Brown, and D J Monger, and S Grayson, and P M Elias
April 1989, The Journal of investigative dermatology,
M L Williams, and B E Brown, and D J Monger, and S Grayson, and P M Elias
February 1989, The Journal of investigative dermatology,
M L Williams, and B E Brown, and D J Monger, and S Grayson, and P M Elias
May 1990, Journal of dermatological science,
M L Williams, and B E Brown, and D J Monger, and S Grayson, and P M Elias
December 1986, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
M L Williams, and B E Brown, and D J Monger, and S Grayson, and P M Elias
May 1967, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M L Williams, and B E Brown, and D J Monger, and S Grayson, and P M Elias
October 1990, The Journal of investigative dermatology,
M L Williams, and B E Brown, and D J Monger, and S Grayson, and P M Elias
January 1995, Archives of dermatological research,
M L Williams, and B E Brown, and D J Monger, and S Grayson, and P M Elias
July 2010, Langmuir : the ACS journal of surfaces and colloids,
Copied contents to your clipboard!