BACKGROUND The sequence database searching has been the dominant method for peptide identification, in which a large number of peptide spectra generated from LC/MS/MS experiments are searched using a search engine against theoretical fragmentation spectra derived from a protein sequences database or a spectral library. Selecting trustworthy peptide spectrum matches (PSMs) remains a challenge. RESULTS A novel scoring method named FC-Ranker is developed to assign a nonnegative weight to each target PSM based on the possibility of its being correct. Particularly, the scores of PSMs are updated by using a fuzzy SVM classification model and a fuzzy silhouette index iteratively. Trustworthy PSMs will be assigned high scores when the algorithm stops. CONCLUSIONS Our experimental studies show that FC-Ranker outperforms other post-database search algorithms over a variety of datasets, and it can be extended to solve a general classification problem with uncertain labels.
| UI | MeSH Term | Description | Entries |
|---|