Improvement of organic solvent tolerance by disruption of the lon gene in Escherichia coli. 2014

Rei Watanabe, and Noriyuki Doukyu
Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan; Bio-Nano Electronic Research Center, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan.

The Lon ATP-dependent protease plays an important role in regulating many biological processes in bacteria. In this study, we examined the organic solvent tolerance of a Δlon mutant of Escherichia coli K-12 and found that the mutant showed remarkably higher organic solvent tolerance than the parent strain. Δlon mutants are known to overproduce capsular polysaccharide, resulting in the formation of mucoid colonies. We considered that this increase in capsular polysaccharide production might be involved in the organic solvent tolerance in E. coli. However, a ΔlonΔwcaJ double-gene mutant displaying a nonmucoid phenotype was as tolerant to organic solvents as the Δlon mutant, suggesting that capsular polysaccharide is not involved in organic solvent tolerance. On the other hand, the Lon protease is known to exhibit proteolytic activity against the transcriptional activators MarA and SoxS, which can enhance the expression level of the AcrAB-TolC efflux pump. We found that the Δlon mutant showed a higher expression level of AcrB than the parent strain. In addition, the ΔlonΔacrB double-gene mutant showed a significant decrease in organic solvent tolerance. Thus, it was shown that organic solvent tolerance in the Δlon mutant depends on the AcrAB-TolC pump but not capsular polysaccharide. E. coli strain JA300 acrRIS marR overexpresses the AcrAB-TolC pump and exhibits high-level solvent tolerance. In an attempt to further improve the solvent tolerance of JA300 acrRIS marR, a lon gene disruptant of this strain was constructed. However, the resulting mutant JA300 acrRIS marR Δlon showed lower solvent tolerance than JA300 acrRIS marR.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D003510 Cyclohexanes Six-carbon alicyclic hydrocarbons.
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D048168 Escherichia coli K12 A species of gram-negative, rod-shaped bacteria belonging to the K serogroup of ESCHERICHIA COLI. It lives as a harmless inhabitant of the human LARGE INTESTINE and is widely used in medical and GENETIC RESEARCH. E coli K12
D049070 Protease La A prokaryotic ATP-dependent protease that plays a role in the degradation of many abnormal proteins. It is a tetramer of 87-kDa subunits, each of which contains a proteolytic site and a ATP-binding site. Lon Protease,Endopeptidase La
D017856 Phosphotransferases (Phosphate Group Acceptor) A group of enzymes that catalyzes the transfer of a phosphate group onto a phosphate group acceptor. EC 2.7.4.

Related Publications

Rei Watanabe, and Noriyuki Doukyu
November 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Rei Watanabe, and Noriyuki Doukyu
July 1995, Bioscience, biotechnology, and biochemistry,
Rei Watanabe, and Noriyuki Doukyu
August 1998, Extremophiles : life under extreme conditions,
Rei Watanabe, and Noriyuki Doukyu
July 1994, Bioscience, biotechnology, and biochemistry,
Rei Watanabe, and Noriyuki Doukyu
January 2007, Applied microbiology and biotechnology,
Rei Watanabe, and Noriyuki Doukyu
December 1994, Applied and environmental microbiology,
Rei Watanabe, and Noriyuki Doukyu
December 1985, Journal of bacteriology,
Rei Watanabe, and Noriyuki Doukyu
January 2003, Journal of bioscience and bioengineering,
Rei Watanabe, and Noriyuki Doukyu
March 2014, Applied biochemistry and biotechnology,
Rei Watanabe, and Noriyuki Doukyu
April 1997, Applied and environmental microbiology,
Copied contents to your clipboard!