Lipid composition of cultured human keratinocytes in relation to their differentiation. 1988

M Ponec, and A Weerheim, and J Kempenaar, and A M Mommaas, and D H Nugteren
Department of Dermatology, University Hospital Leiden, The Netherlands.

The present study was undertaken to explore the possibility of the use of cultured human keratinocytes for the study of changes in lipid composition in relation to epidermal differentiation. In a submerged culture system, in which the stratification is incomplete, no significant differences have been found between the lipid composition of cells grown either at low calcium concentration (0.06 mM) (at which the keratinocyte differentiation is markedly retarded) or at normal calcium concentration (1.6 mM) (at which some differentiation takes place). Under these conditions the amount of phospholipids and sterols was high and that of ceramides was low. Furthermore, the acylglucosylceramides (AGC) and acylceramides (AC), the latter one known to be involved in water barrier function, were found to be absent. Contrary to this, both AGC and AC were found to be present in significant amounts in an air-exposed model using de-epidermized dermis (DED) as a substrate (in which, as judged from morphologic criteria, the extent of keratinocyte stratification is similar to that seen under the in vivo conditions). Fatty acid analysis revealed significantly lower content of 18:2 and higher content of 16:1 and 18:1 acids with all culture conditions used, as compared to the parent epidermis. This is probably a result of fatty acid levels and composition in fetal calf serum (which was used in the present study) that differ markedly from the in vivo situation. The 20:4 content was similar to that in the epidermis only in cells cultured under the submerged conditions, during which they have been found (Isseroff et al. 1987. J. Lipid Res. 28: 1342-1349) to be able to convert 18:2 to 20:4. In DED cultures, however, the 20:4 content was markedly lower. Under all culture conditions used, the triglyceride content was higher as compared to the non-cultured epidermis. The high content of triglycerides and the fatty acid composition of the various lipid fractions showed a resemblance with what is found in the epidermis in essential fatty acid-deficient animals. This resemblance was confirmed by electron micrographs which revealed the presence of some partially or completely empty lamellar bodies. The results of the present study suggest that the air-exposed culture model, in which the keratinocytes show a high extent of stratification, could be of great value in the study of epidermal lipid metabolism. However, further alterations in culture conditions are necessary to more closely approximate the lipid composition of noncultured epidermis.

UI MeSH Term Description Entries
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Ponec, and A Weerheim, and J Kempenaar, and A M Mommaas, and D H Nugteren
August 1986, The Journal of investigative dermatology,
M Ponec, and A Weerheim, and J Kempenaar, and A M Mommaas, and D H Nugteren
January 1997, Lipids,
M Ponec, and A Weerheim, and J Kempenaar, and A M Mommaas, and D H Nugteren
January 1991, Advances in lipid research,
M Ponec, and A Weerheim, and J Kempenaar, and A M Mommaas, and D H Nugteren
April 1999, The Journal of investigative dermatology,
M Ponec, and A Weerheim, and J Kempenaar, and A M Mommaas, and D H Nugteren
June 1980, Thrombosis research,
M Ponec, and A Weerheim, and J Kempenaar, and A M Mommaas, and D H Nugteren
January 2010, Methods in molecular biology (Clifton, N.J.),
M Ponec, and A Weerheim, and J Kempenaar, and A M Mommaas, and D H Nugteren
January 2002, Electrophoresis,
M Ponec, and A Weerheim, and J Kempenaar, and A M Mommaas, and D H Nugteren
July 1984, The British journal of dermatology,
M Ponec, and A Weerheim, and J Kempenaar, and A M Mommaas, and D H Nugteren
January 2008, In vitro cellular & developmental biology. Animal,
M Ponec, and A Weerheim, and J Kempenaar, and A M Mommaas, and D H Nugteren
June 1994, In vitro cellular & developmental biology. Animal,
Copied contents to your clipboard!