| D007473 |
Ion Channels |
Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. |
Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane |
|
| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D002412 |
Cations |
Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. |
Cation |
|
| D002460 |
Cell Line |
Established cell cultures that have the potential to propagate indefinitely. |
Cell Lines,Line, Cell,Lines, Cell |
|
| D002478 |
Cells, Cultured |
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. |
Cultured Cells,Cell, Cultured,Cultured Cell |
|
| D004553 |
Electric Conductivity |
The ability of a substrate to allow the passage of ELECTRONS. |
Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical |
|
| D005347 |
Fibroblasts |
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. |
Fibroblast |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D012879 |
Skin Physiological Phenomena |
The functions of the skin in the human and animal body. It includes the pigmentation of the skin. |
Skin Physiological Processes,Skin Physiology,Physiology, Skin,Skin Physiological Concepts,Skin Physiological Phenomenon,Skin Physiological Process,Concept, Skin Physiological,Concepts, Skin Physiological,Phenomena, Skin Physiological,Phenomenas, Skin Physiological,Phenomenon, Skin Physiological,Phenomenons, Skin Physiological,Physiological Concept, Skin,Physiological Concepts, Skin,Physiological Phenomena, Skin,Physiological Phenomenas, Skin,Physiological Phenomenon, Skin,Physiological Phenomenons, Skin,Process, Skin Physiological,Processes, Skin Physiological,Skin Physiological Concept,Skin Physiological Phenomenas,Skin Physiological Phenomenons |
|