Processivity of proteolytically modified forms of T7 RNA polymerase. 1988

D K Muller, and C T Martin, and J E Coleman
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510.

Two proteolytically modified forms of T7 RNA polymerase have been characterized with respect to transcription initiation and processivity. One species, denoted 80K-20K, is singly cleaved within the region of the polypeptide chain between amino acids 172 and 180. The second species, denoted 80K, is generated by extensive proteolysis of the N-terminal 20K domain by trypsin. The 80K-20K form is fully active in initiation and escape from abortive cycling. It is deficient only in processivity on long DNA templates. Likewise, the 80K species shows initiation kinetics and abortive product synthesis similar to those of the native enzyme. This latter species, however, is unable to escape abortive cycling and shows no synthesis of transcripts longer than about eight bases. Studies of RNA and DNA binding to the three different forms of the enzyme by gel retention assays reveal that the native (98K), the 80K-20K, and the 80K species all form specific complexes with promoter-containing DNA. In addition, the native enzyme binds nonspecifically to double-stranded DNA, while the 80K-20K and 80K enzymes do not. The native enzyme also binds RNA. This RNA binding is reduced in the 80K-20K enzyme and is absent in the 80K species. We suggest a model for T7 RNA polymerase wherein the 20K N-terminal domain of the protein or a shared region between the N- and the C-terminal domains of the protein forms a nonspecific polynucleotide binding site.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

D K Muller, and C T Martin, and J E Coleman
May 1972, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
D K Muller, and C T Martin, and J E Coleman
March 1987, The Journal of biological chemistry,
D K Muller, and C T Martin, and J E Coleman
March 1997, Biochemistry,
D K Muller, and C T Martin, and J E Coleman
March 1987, The Journal of biological chemistry,
D K Muller, and C T Martin, and J E Coleman
June 1991, Biochemistry,
D K Muller, and C T Martin, and J E Coleman
January 2003, Progress in nucleic acid research and molecular biology,
D K Muller, and C T Martin, and J E Coleman
July 1978, The Journal of biological chemistry,
D K Muller, and C T Martin, and J E Coleman
July 1999, Protein expression and purification,
D K Muller, and C T Martin, and J E Coleman
September 2004, Journal of the American Chemical Society,
D K Muller, and C T Martin, and J E Coleman
January 1999, Molekuliarnaia biologiia,
Copied contents to your clipboard!