Prolactin synthesis in cultured pituitary cells is chloride-dependent. 1988

R N Day, and P M Hinkle
Department of Pharmacology, University of Rochester Medical Center, New York 14642.

Release of prolactin from both normal pituitary cells and rat pituitary tumor (GH) cells is an osmotic process that is dependent upon chloride. The long term growth rate of GH-cells in medium in which chloride was exchanged with isethionate was completely normal, but, by 48 h, isethionate substitution resulted in a 70% decrease in the concentration of internal and secreted prolactin. Isethionate caused a much smaller reduction in growth hormone production (less than 20%). These results suggest that exchange of chloride with isethionate is inhibiting the synthesis of prolactin. Reduction of intracellular levels of prolactin in cells grown in isethionate-containing medium was evident by 30 h, and the level of prolactin was reduced 92% at 96 h. This reduction in the internal concentrations of prolactin was reversed when the cells were returned to normal medium containing chloride with a t1/2 of 48 h. Addition of epidermal growth factor and the calcium channel agonist BAY K 8644 to cells in medium containing chloride increased internal prolactin by 400%, and isethionate exchange reduced the response by 85%. To confirm that isethionate exchange was inhibiting the synthesis of prolactin, mRNA concentrations for prolactin and actin were determined. Both basal and hormone-stimulated levels of prolactin mRNA were reduced 70 to 90% by isethionate exchange, while actin mRNA levels did not change. To determine whether the effect of isethionate was at the level of gene transcription, GH-cells were transfected with a prolactin-chloramphenicol acetyltransferase fusion gene and chloramphenicol acetyltransferase expression was assessed using cells in chloride and isethionate-containing media. Both basal and hormone-stimulated synthesis of chloramphenicol acetyltransferase driven by the prolactin promoter was inhibited by isethionate exchange. These studies demonstrate that exchange of medium chloride with isethionate inhibits the synthesis of prolactin at the level of transcription.

UI MeSH Term Description Entries
D007513 Isethionic Acid A colorless, syrupy, strongly acidic liquid that can form detergents with oleic acid. Hydroxyethylsulfonic Acid,Isethionic Acid Monoammonium Salt,Isethionic Acid Monopotassium Salt,Isethionic Acid Monosodium Salt,Sodium Isethionate,Acid, Hydroxyethylsulfonic,Acid, Isethionic,Isethionate, Sodium
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D010911 Pituitary Neoplasms Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA. Pituitary Cancer,Cancer of Pituitary,Cancer of the Pituitary,Pituitary Adenoma,Pituitary Carcinoma,Pituitary Tumors,Adenoma, Pituitary,Adenomas, Pituitary,Cancer, Pituitary,Cancers, Pituitary,Carcinoma, Pituitary,Carcinomas, Pituitary,Neoplasm, Pituitary,Neoplasms, Pituitary,Pituitary Adenomas,Pituitary Cancers,Pituitary Carcinomas,Pituitary Neoplasm,Pituitary Tumor,Tumor, Pituitary,Tumors, Pituitary
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R N Day, and P M Hinkle
January 1980, Hormone research,
R N Day, and P M Hinkle
April 1991, Molecular and cellular endocrinology,
R N Day, and P M Hinkle
May 1976, The Journal of biological chemistry,
R N Day, and P M Hinkle
November 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!