Modulation of osteoclast differentiation and bone resorption by Rho GTPases. 2014

Heiani Touaitahuata, and Anne Blangy, and Virginie Vives
Montpellier University; CNRS UMR 5237; Centre de Recherche de Biochimie Macromoléculaire; Montpellier, France.

Bone is a dynamic tissue constantly renewed through a regulated balance between bone formation and resorption. Excessive bone degradation by osteoclasts leads to pathological decreased bone density characteristic of osteolytic diseases such as post-menopausal osteoporosis or bone metastasis. Osteoclasts are multinucleated cells derived from hematopoietic stem cells via a complex differentiation process. Their unique ability to resorb bone is dependent on the formation of the actin-rich sealing zone. Within this adhesion structure, the plasma membrane differentiates into the ruffled border where protons and proteases are secreted to demineralize and degrade bone, respectively. On the bone surface, mature osteoclasts alternate between stationary resorptive and migratory phases. These are associated with profound actin cytoskeleton reorganization, until osteoclasts die of apoptosis. In this review, we highlight the role of Rho GTPases in all the steps of osteoclasts differentiation, function, and death and conclude on their interest as targets for treatment of osteolytic pathologies.

UI MeSH Term Description Entries
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D053245 RANK Ligand A transmembrane protein belonging to the tumor necrosis factor superfamily that specifically binds RECEPTOR ACTIVATOR OF NUCLEAR FACTOR-KAPPA B and OSTEOPROTEGERIN. It plays an important role in regulating OSTEOCLAST differentiation and activation. Tumor Necrosis Factor Ligand Superfamily Member 11,CD254 Antigen,OPGL Protein,Osteoclast Differentiation Factor,Osteoprotegerin Ligand,RANKL Protein,Receptor Activator of Nuclear Factor-kappa B Ligand,Receptor Activator of Nuclear Factor-kappaB Ligand,TNF Superfamily, Member 11,TRANCE Protein,Tumor Necrosis Factor-Related Activation-Induced Cytokine,Antigen, CD254,Differentiation Factor, Osteoclast,Receptor Activator of Nuclear Factor kappa B Ligand,Receptor Activator of Nuclear Factor kappaB Ligand,Tumor Necrosis Factor Related Activation Induced Cytokine
D020662 Guanine Nucleotide Exchange Factors Protein factors that promote the exchange of GTP for GDP bound to GTP-BINDING PROTEINS. GDP Exchange Factors,GDP-GTP Reversing Factors,Guanine Nucleotide Releasing Factors,GDP Dissociation Factor,GDP Dissociation Stimulators,GDP-GTP Exchange Protein,Guanine Nucleotide Exchange Factor,Guanine-Nucleotide-Releasing Factor,Exchange Factors, GDP,Factors, GDP Exchange,Factors, GDP-GTP Reversing,GDP GTP Exchange Protein,GDP GTP Reversing Factors,Guanine Nucleotide Releasing Factor,Reversing Factors, GDP-GTP
D020741 rho GTP-Binding Proteins A large family of MONOMERIC GTP-BINDING PROTEINS that are involved in regulation of actin organization, gene expression and cell cycle progression. This enzyme was formerly listed as EC 3.6.1.47. rho G-Proteins,rho GTPase,rho GTPases,rho Small GTP-Binding Proteins,P21 (rho)Protein,rho GTP-Binding Protein,rho Protein P21,G-Proteins, rho,GTP-Binding Protein, rho,GTP-Binding Proteins, rho,GTPase, rho,GTPases, rho,P21, rho Protein,rho G Proteins,rho GTP Binding Protein,rho GTP Binding Proteins,rho Small GTP Binding Proteins
D020744 rac GTP-Binding Proteins A sub-family of RHO GTP-BINDING PROTEINS that is involved in regulating the organization of cytoskeletal filaments. This enzyme was formerly listed as EC 3.6.1.47. rac Proteins,rac G Protein,G Protein, rac,GTP-Binding Proteins, rac,rac GTP Binding Proteins
D020764 cdc42 GTP-Binding Protein A member of the Rho family of MONOMERIC GTP-BINDING PROTEINS. It is associated with a diverse array of cellular functions including cytoskeletal changes, filopodia formation and transport through the GOLGI APPARATUS. This enzyme was formerly listed as EC 3.6.1.47. G25K GTP-Binding Protein, Placental Isoform,G25K Protein,cdc42 Protein,p21 cdc42,Cell Division Control Protein 42 Homolog,Cell Division Cycle 42 Protein,G25K GTP-Binding Protein,G25K GTP Binding Protein,G25K GTP Binding Protein, Placental Isoform,GTP-Binding Protein, G25K,GTP-Binding Protein, cdc42,cdc42 GTP Binding Protein,cdc42, p21

Related Publications

Heiani Touaitahuata, and Anne Blangy, and Virginie Vives
May 2011, Small GTPases,
Heiani Touaitahuata, and Anne Blangy, and Virginie Vives
September 2007, Biochemical pharmacology,
Heiani Touaitahuata, and Anne Blangy, and Virginie Vives
July 2022, Environmental toxicology,
Heiani Touaitahuata, and Anne Blangy, and Virginie Vives
June 2022, Molecular nutrition & food research,
Heiani Touaitahuata, and Anne Blangy, and Virginie Vives
July 2011, The Journal of biological chemistry,
Heiani Touaitahuata, and Anne Blangy, and Virginie Vives
January 2012, Advances in experimental medicine and biology,
Heiani Touaitahuata, and Anne Blangy, and Virginie Vives
September 2006, Human pathology,
Heiani Touaitahuata, and Anne Blangy, and Virginie Vives
January 2017, Molecular and cellular endocrinology,
Heiani Touaitahuata, and Anne Blangy, and Virginie Vives
January 2019, Microbial pathogenesis,
Copied contents to your clipboard!