Cloning variable region genes of clonal lymphoma immunoglobulin for generating patient-specific idiotype DNA vaccine. 2014

Soung-Chul Cha, and Hong Qin, and Ippei Sakamaki, and Larry Kwak
Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Available therapies for lymphoplasmacytic lymphoma (LPL) provide no survival advantage if started before signs or symptoms of end-organ damage develop; hence, current recommendations are to follow a program of observation while patients are in the asymptomatic phase of disease. We hypothesize that using idiotypic determinants of a B-cell lymphoma's surface immunoglobulin as a tumor-specific marker, we can develop patient-specific chemokine-idiotype fusion DNA vaccines that induce an immune response against LPL. By activating the host immune system against the tumor antigen, we postulate that disease control of asymptomatic phase lymphoplasmacytic lymphoma can be maintained. These chemokine-idiotype fusion DNA vaccines provide protection in a lymphoma mouse model and have recently entered clinical trials. Herein, we describe procedures for the generation of therapeutic vaccines, particularly "second-generation" recombinant vaccines. Specifically, in the Methods section we describe how to identify lymphoma-associated immunoglobulin V (IgV) genes from patient biopsy and how to assemble these genes as single-chain variable gene fragment (scFv) in-frame with MIP-3α to generate novel DNA fusion vaccines.

UI MeSH Term Description Entries
D007130 Immunoglobulin Idiotypes Unique genetically-controlled determinants present on ANTIBODIES whose specificity is limited to a single group of proteins (e.g., another antibody molecule or an individual myeloma protein). The idiotype appears to represent the antigenicity of the antigen-binding site of the antibody and to be genetically codetermined with it. The idiotypic determinants have been precisely located to the IMMUNOGLOBULIN VARIABLE REGION of both immunoglobin polypeptide chains. Idiotypes, Immunoglobulin,Ig Idiotypes,Idiotype, Ig,Idiotype, Immunoglobulin,Idiotypes, Ig,Ig Idiotype,Immunoglobulin Idiotype
D008223 Lymphoma A general term for various neoplastic diseases of the lymphoid tissue. Germinoblastoma,Lymphoma, Malignant,Reticulolymphosarcoma,Sarcoma, Germinoblastic,Germinoblastic Sarcoma,Germinoblastic Sarcomas,Germinoblastomas,Lymphomas,Lymphomas, Malignant,Malignant Lymphoma,Malignant Lymphomas,Reticulolymphosarcomas,Sarcomas, Germinoblastic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D017422 Sequence Analysis, DNA A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis. DNA Sequence Analysis,Sequence Determination, DNA,Analysis, DNA Sequence,DNA Sequence Determination,DNA Sequence Determinations,DNA Sequencing,Determination, DNA Sequence,Determinations, DNA Sequence,Sequence Determinations, DNA,Analyses, DNA Sequence,DNA Sequence Analyses,Sequence Analyses, DNA,Sequencing, DNA
D057127 Single-Chain Antibodies A form of antibodies consisting only of the variable regions of the heavy and light chains (FV FRAGMENTS), connected by a small linker peptide. They are less immunogenic than complete immunoglobulin and thus have potential therapeutic use. Fv Antibody Fragments, Single-Chain,ScFv Antibodies,Single-Chain Fv,Single-Chain Fv Antibody,Single-Chain Fv Antibody Fragments,Single-Chain Variable Fragment,Single-Chain Variable Fragment Antibodies,Single-Chain Variable Fragment Antibody,Single-Chain Variable Fragments,Antibodies, ScFv,Antibodies, Single-Chain,Antibody, Single-Chain Fv,Fragment, Single-Chain Variable,Fragments, Single-Chain Variable,Fv Antibody Fragments, Single Chain,Fv Antibody, Single-Chain,Fv, Single-Chain,Single Chain Antibodies,Single Chain Fv,Single Chain Fv Antibody,Single Chain Fv Antibody Fragments,Single Chain Variable Fragment,Single Chain Variable Fragment Antibodies,Single Chain Variable Fragment Antibody,Single Chain Variable Fragments,Variable Fragment, Single-Chain,Variable Fragments, Single-Chain

Related Publications

Soung-Chul Cha, and Hong Qin, and Ippei Sakamaki, and Larry Kwak
December 1990, Behring Institute Mitteilungen,
Soung-Chul Cha, and Hong Qin, and Ippei Sakamaki, and Larry Kwak
March 1994, British journal of haematology,
Soung-Chul Cha, and Hong Qin, and Ippei Sakamaki, and Larry Kwak
February 1983, Journal of immunology (Baltimore, Md. : 1950),
Soung-Chul Cha, and Hong Qin, and Ippei Sakamaki, and Larry Kwak
January 1984, Survey and synthesis of pathology research,
Soung-Chul Cha, and Hong Qin, and Ippei Sakamaki, and Larry Kwak
December 1984, Science (New York, N.Y.),
Soung-Chul Cha, and Hong Qin, and Ippei Sakamaki, and Larry Kwak
January 1993, The EMBO journal,
Soung-Chul Cha, and Hong Qin, and Ippei Sakamaki, and Larry Kwak
September 1995, Annals of the New York Academy of Sciences,
Soung-Chul Cha, and Hong Qin, and Ippei Sakamaki, and Larry Kwak
August 1978, Proceedings of the National Academy of Sciences of the United States of America,
Soung-Chul Cha, and Hong Qin, and Ippei Sakamaki, and Larry Kwak
October 2001, Japanese journal of cancer research : Gann,
Soung-Chul Cha, and Hong Qin, and Ippei Sakamaki, and Larry Kwak
October 1990, Hybridoma,
Copied contents to your clipboard!