Kinetic and pharmacological properties of the GABA-induced chloride current in Aplysia neurones: a 'concentration clamp' study. 1988

Y Ikemoto, and N Akaike, and H Kijima
Department of Physiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.

1. gamma-Aminobutyric acid (GABA) was applied by the 'concentration clamp' technique to isolated neurones of Aplysia. GABA induced a chloride current (ICl) due to activation of a single class of chloride-channel. 2. The concentration-response curve for the peak ICl gave an apparent dissociation constant of 6.4 X 10(-5) M and a Hill coefficient of 0.88. The current-voltage relationship was linear in the voltage range examined (-40 to +10 mV). 3. The activation phase of the ICl could be fitted to a single exponential function and desensitization followed the sum of two exponential functions. The time constants of activation and desensitization decreased with increasing concentrations of GABA but were voltage-independent. The recovery process from desensitization also followed the sum of two exponential functions. 4. As for the rate-limiting step of the channel activation, the hyperbolic relationship between the activation rate and GABA concentration showed that the rapid binding assumption holds, suggesting that the isomerization step is rate-limiting. The apparent channel closing rate constant was estimated to be 10 s-1 from the ordinate intercept of the linear part of the above relationship at lower concentrations. 5. Muscimol and beta-alanine induced a ICl, which cross-desensitized with that evoked by GABA. The GABA-ICl was not enhanced by diazepam (10(-6) M) or alpha-chloralose (10(-3) M), in fact depressant effects were evident. 6. Pentobarbitone decreased the GABA-ICl non-competitively without altering activation or desensitization kinetics. The concentration-inhibition curve gave a KD value of 8.9 x 10(-5) M and a Hill coefficient of 1.0. 7. These results suggest that GABA activates a single class of Cl channel in Aplysia neurones, which have one binding site for the agonist. The GABA receptor-Cl channel complex in Aplysia is pharmacologically and perhaps structurally different from that in vertebrates.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010424 Pentobarbital A short-acting barbiturate that is effective as a sedative and hypnotic (but not as an anti-anxiety) agent and is usually given orally. It is prescribed more frequently for sleep induction than for sedation but, like similar agents, may lose its effectiveness by the second week of continued administration. (From AMA Drug Evaluations Annual, 1994, p236) Mebubarbital,Mebumal,Diabutal,Etaminal,Ethaminal,Nembutal,Pentobarbital Sodium,Pentobarbital, Monosodium Salt,Pentobarbitone,Sagatal,Monosodium Salt Pentobarbital
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003975 Diazepam A benzodiazepine with anticonvulsant, anxiolytic, sedative, muscle relaxant, and amnesic properties and a long duration of action. Its actions are mediated by enhancement of GAMMA-AMINOBUTYRIC ACID activity. 7-Chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one,Apaurin,Diazemuls,Faustan,Relanium,Seduxen,Sibazon,Stesolid,Valium
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias

Related Publications

Y Ikemoto, and N Akaike, and H Kijima
October 1986, The Journal of physiology,
Y Ikemoto, and N Akaike, and H Kijima
December 1987, The Journal of physiology,
Y Ikemoto, and N Akaike, and H Kijima
November 1990, Naunyn-Schmiedeberg's archives of pharmacology,
Y Ikemoto, and N Akaike, and H Kijima
April 1976, The Journal of physiology,
Y Ikemoto, and N Akaike, and H Kijima
December 2001, The Journal of physiology,
Y Ikemoto, and N Akaike, and H Kijima
October 1985, The Journal of physiology,
Y Ikemoto, and N Akaike, and H Kijima
November 1988, British journal of pharmacology,
Y Ikemoto, and N Akaike, and H Kijima
February 1991, The Journal of physiology,
Y Ikemoto, and N Akaike, and H Kijima
December 1986, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!