Villin expression in the visceral endoderm and in the gut anlage during early mouse embryogenesis. 1988

R Maunoury, and S Robine, and E Pringault, and C Huet, and J L Guénet, and J A Gaillard, and D Louvard
Institut Pasteur, Département de Biologie Moléculaire, Paris, France.

Villin is an evolutionarily well conserved, Ca2+ regulated actin-binding protein, and a major structural component of the brush border of specialized absorptive cells. Using paraffin sections and an affinity purified polyclonal anti-villin antibody, we have investigated the early expression of villin during mouse embryogenesis. Villin is first detectable at the early post-implantation stage in visceral endodermal cells at the periphery of the egg cylinder. In this extra embryonic layer, the expression of villin increases and then persists until full term gestation. In the embryo, villin first appears in gut anlage during the axial rotation. Using the same methodology, villin expression is also demonstrated in differentiating embryoid bodies from a teratocarcinoma. Both in extra embryonic and embryonic extracts, villin expression is confirmed by immunoblot and Northern blot analysis which reveal, respectively, a single polypeptide of 93 kd and an mRNA of 3.4 kb in length, two well defined parameters for adult mouse villin gene expression. The results presented here show that paraffin sections allow very sensitive and highly resolutive detection of antigens in early embryogenesis. They provide a detailed developmental profile of villin expression and demonstrate the usefulness of villin as a marker for epithelial cells involved in absorptive processes.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004707 Endoderm The inner of the three germ layers of an embryo. Definitive Endoderm,Definitive Endoderms,Endoderm, Definitive,Endoderms
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial

Related Publications

R Maunoury, and S Robine, and E Pringault, and C Huet, and J L Guénet, and J A Gaillard, and D Louvard
April 2003, Current biology : CB,
R Maunoury, and S Robine, and E Pringault, and C Huet, and J L Guénet, and J A Gaillard, and D Louvard
June 1989, Development (Cambridge, England),
R Maunoury, and S Robine, and E Pringault, and C Huet, and J L Guénet, and J A Gaillard, and D Louvard
October 2008, Developmental dynamics : an official publication of the American Association of Anatomists,
R Maunoury, and S Robine, and E Pringault, and C Huet, and J L Guénet, and J A Gaillard, and D Louvard
April 2000, Mechanisms of development,
R Maunoury, and S Robine, and E Pringault, and C Huet, and J L Guénet, and J A Gaillard, and D Louvard
January 1983, Haematology and blood transfusion,
R Maunoury, and S Robine, and E Pringault, and C Huet, and J L Guénet, and J A Gaillard, and D Louvard
August 1984, The Journal of experimental zoology,
R Maunoury, and S Robine, and E Pringault, and C Huet, and J L Guénet, and J A Gaillard, and D Louvard
December 2014, Seikagaku. The Journal of Japanese Biochemical Society,
R Maunoury, and S Robine, and E Pringault, and C Huet, and J L Guénet, and J A Gaillard, and D Louvard
April 1994, Differentiation; research in biological diversity,
R Maunoury, and S Robine, and E Pringault, and C Huet, and J L Guénet, and J A Gaillard, and D Louvard
February 2013, Autophagy,
R Maunoury, and S Robine, and E Pringault, and C Huet, and J L Guénet, and J A Gaillard, and D Louvard
May 1999, The International journal of developmental biology,
Copied contents to your clipboard!