Tyrosine phosphorylation of the insulin receptor during insulin-stimulated internalization in rat hepatoma cells. 1989

J M Backer, and C R Kahn, and M F White
Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215.

We have studied the phosphorylation state of the insulin receptor during receptor-mediated endocytosis in the well-differentiated rat hepatoma cell line Fao. Insulin induced the rapid internalization of surface-iodinated insulin receptors into a trypsin-resistant compartment, with a 3-fold increase in the internalization rate over that seen in the absence of insulin. Within 20 min of insulin stimulation, 30-35% of surface receptors were located inside the cell. This redistribution was half-maximal by 10.5 min. Similar results were obtained when the loss of surface receptors was measured by 125I-insulin binding. Tyrosyl phosphorylation of internalized insulin receptors was measured by immunoprecipitation with antiphosphotyrosine antibody. Immediately after insulin stimulation, 70-80% of internalized receptors were tyrosine phosphorylated. Internalized receptors persisted in a phosphorylated state after the dissociation of insulin but were dephosphorylated prior to their return to the plasma membrane. After 45-60 min of insulin stimulation, the tyrosine phosphorylation of the internal receptor pool decreased by 45%, whereas the phosphorylation of surface receptors was unchanged. These data suggest that insulin induces the internalization of phosphorylated insulin receptors into the cell and that the phosphorylation state of the internal receptor pool may be regulated by insulin.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J M Backer, and C R Kahn, and M F White
January 1988, The Journal of biological chemistry,
J M Backer, and C R Kahn, and M F White
April 1986, The Journal of biological chemistry,
J M Backer, and C R Kahn, and M F White
January 1990, Cellular signalling,
J M Backer, and C R Kahn, and M F White
January 1985, Arzneimittel-Forschung,
J M Backer, and C R Kahn, and M F White
September 1990, FEBS letters,
J M Backer, and C R Kahn, and M F White
February 1988, The Journal of biological chemistry,
Copied contents to your clipboard!