Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum--I. Subcortical afferents. 1988

K Wictorin, and O Isacson, and W Fischer, and F Nothias, and M Peschanski, and A Björklund
Department of Medical Cell Research, University of Lund, Sweden.

Subcortical afferents to transplants of fetal striatal tissue, implanted into the excitotoxically lesioned striatum of adult recipient rats, were studied with retrograde and anterograde axonal tracers and immunohistochemistry. One week after a striatal ibotenic acid lesion, involving most of the head of the caudate-putamen, a suspension of fetal striatal tissue (embryonic day 14-15) was injected into the lesioned area. In one group of rats, the ibotenic acid lesion was preceded (10 days) by large intrastriatal injections of True Blue, with injection sites matching the area to be lesioned. This was done to retrogradely pre-label the host brain afferents to the area of the striatum later to be lesioned and grafted. At 3 or 6 months post-transplantation, small injections (50 nl) of rhodamine-labelled latex beads were made into the striatal grafts. In animals where the injections were confined to the graft, retrogradely labelled host brain neurons were found in the thalamus, the substantia nigra, amygdala and dorsal raphe nucleus. Double-labelling analysis revealed that the vast majority of the rhodamine bead-labelled neurons also contained True Blue, which indicates that the host afferents to the graft, to a large extent, were derived from the neurons which normally project to the area of the caudate-putamen which was lesioned by the ibotenic acid injection. To further substantiate these observations a second group of lesioned and grafted animals received unilateral wheatgerm agglutinin-horseradish peroxidase injections into the ipsilateral host thalamus at 4 months post-transplantation in order to anterogradely label the host thalamostriatal axons. In a third group of animals serotonin immunocytochemistry was performed in order to detect possible afferents from the raphe nuclei. In contrast to the serotonin-containing fibers, which were fairly evenly distributed throughout the graft tissue, the peroxidase-labelled thalamic afferents were most prominent in the peripheral zones of the grafts and they were densely aggregated at the graft-host interface. The combined results provide evidence that the intrastriatal grafts receive afferents from the host substantia nigra, thalamus, amygdala and dorsal raphe nucleus, but with different distributions. The afferents from the substantia nigra, amygdala and raphe nuclei seem to distribute throughout the grafted tissue, although they are most dense in the peripheral parts, whereas the thalamic afferents are largely confined to the peripheral areas of the transplants and to the graft-host interface.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish

Related Publications

K Wictorin, and O Isacson, and W Fischer, and F Nothias, and M Peschanski, and A Björklund
January 1989, Neuroscience,
K Wictorin, and O Isacson, and W Fischer, and F Nothias, and M Peschanski, and A Björklund
January 1986, Experimental brain research,
K Wictorin, and O Isacson, and W Fischer, and F Nothias, and M Peschanski, and A Björklund
January 1988, Progress in brain research,
K Wictorin, and O Isacson, and W Fischer, and F Nothias, and M Peschanski, and A Björklund
January 1988, Progress in brain research,
K Wictorin, and O Isacson, and W Fischer, and F Nothias, and M Peschanski, and A Björklund
December 1988, Naunyn-Schmiedeberg's archives of pharmacology,
K Wictorin, and O Isacson, and W Fischer, and F Nothias, and M Peschanski, and A Björklund
January 1984, Nature,
K Wictorin, and O Isacson, and W Fischer, and F Nothias, and M Peschanski, and A Björklund
September 1989, Pharmacology, biochemistry, and behavior,
K Wictorin, and O Isacson, and W Fischer, and F Nothias, and M Peschanski, and A Björklund
May 1989, The European journal of neuroscience,
K Wictorin, and O Isacson, and W Fischer, and F Nothias, and M Peschanski, and A Björklund
January 1995, Experimental brain research,
K Wictorin, and O Isacson, and W Fischer, and F Nothias, and M Peschanski, and A Björklund
January 1985, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!