Phagocytosis in Dictyostelium discoideum is inhibited by antibodies directed primarily against common carbohydrate epitopes of a major cell-surface plasma membrane glycoprotein. 1989

C P Chia, and E J Luna
Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545.

Using a water-soluble, reversible biotinylating reagent, we retrieved three surface-exposed proteins from a complex mixture of crude membrane proteins. The compound, sulfosuccinimidyl 2-(biotinamido)ethyl-1-3'-dithiopropionate (sulfo-NHS-SS-biotin), which has a cleavable disulfide bond, was used to label Dictyostelium discoideum amebae. Cells were lysed and a crude membrane preparation was isolated and solubilized with Triton X-100. Biotinylated molecules were bound to immobilized streptavidin and then eluted from the affinity matrix with dithiothreitol. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that out of the original complex mixture of detergent-solubilized membrane proteins, three major species at 130, 100, and 77 kDa were specifically bound and eluted with thiol reagents. These three proteins were glycoproteins (gp) since they bound concanavalin A. As demonstrated by one-dimensional peptide mapping, the retrieved gp130 and gp100 also were present in specialized plasma membrane subdomains called contact regions which are regions of cell-cell cohesion isolated from aggregated, developed amebae. This finding provides preliminary evidence that the two proteins may be involved in cell-cell interactions during both the vegetative and aggregation stages of the D. discoideum life cycle. The retrieved gp130 species has a relative mobility on SDS-gels similar to that of gp126, a surface-exposed glycoprotein. gp126 has been suggested to play roles both as a phagocytosis receptor and as a cohesion molecule (C.M. Chadwick, J.E. Ellison, and D.R. Garrod, (1984) Nature (London) 307, 646). To test if the retrieved gp130 was the same as gp126, a polyclonal antiserum was raised against gel-purified, endoglycosidase F-treated gp130. The immune serum recognized epitopes, apparently carbohydrates, present on many D. discoideum membrane proteins. Univalent IgG fragments from this antiserum inhibited phagocytosis, suggesting that anti-carbohydrate activity was responsible for the functional inhibition of phagocytosis.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007140 Immunoglobulin Fab Fragments Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fab Fragment,Fab Fragments,Ig Fab Fragments,Immunoglobulins, Fab Fragment,Fab Immunoglobulin Fragments,Immunoglobulin Fab Fragment,Immunoglobulins, Fab,Fab Fragment Immunoglobulins,Fab Fragment, Immunoglobulin,Fab Fragments, Immunoglobulin,Fragment Immunoglobulins, Fab,Fragment, Fab,Immunoglobulin Fragments, Fab
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic

Related Publications

C P Chia, and E J Luna
September 1996, Experimental cell research,
C P Chia, and E J Luna
March 1984, Molecular and cellular biology,
C P Chia, and E J Luna
November 1983, Proceedings of the National Academy of Sciences of the United States of America,
C P Chia, and E J Luna
May 1981, Biochemical and biophysical research communications,
Copied contents to your clipboard!