Early postnatal development of the monkey globus pallidus: a Golgi and electron microscopic study. 1989

J Cano, and P Pasik, and T Pasik
Department of Neurology, Mount Sinai School of Medicine, CUNY 10029.

The globus pallidus of 20 monkeys ranging in age from newborn to 4 months was examined in Golgi-impregnated material and ultrastructurally. There was no discernible difference between the lateral and medial segments of the structure. At the light microscope level, all neuronal types described in the adult are found at birth. The most common, the large fusifom cell, shows initial signs of immaturity such as blunt protrusions and dendritic dilations at bifurcation points, as well as growth cones, filopodia, and filiform processes. These features become more rare with age, and by 4 months, the neurons appear fully mature save for the terminal dendritic arborizations which are still underdeveloped. From the earliest ages examined, the large globular cells and the interneurons are more mature than the previous type. The afferent radial fibers of striatal origin are observed from birth, but they are grouped in bundles only after 8 weeks. The density of their climbing branches increases over time, reaching a mature appearance by 16 weeks. Afferents entering from the ventral surface do not yet show clusters of varicosities at 2 weeks. At the latter age, plexuses of fine beaded fibers are already seen covering large extensions of the nucleus. The fine structure correlates well with the Golgi material. The basic features of the neuropil are present at birth, albeit with immature characteristics such as the incomplete covering of the dendrites with axonal boutons and the low level of myelination of the radial fibers. Growth cones and profiles with signs of degeneration are observed during the first month. In the early ages examined, most dendrites show large varicosities and protrusions, some of which are spinelike and can be postsynaptic to multiple terminals. The other dendritic type, with only an occasional axodendritic synapse, is also seen from birth and increases in size as a function of time. The type I axonal boutons, of probable striatal origin, are quite immature at birth, and their characteristic interdigitations are seen only after the first week. The type II, III, IV, and V boutons appear mature at all ages examined but crest synapses formed by the type III terminals are observed in the later stages of the study. Finally, postsynaptic vesicle-containing profiles are present at 4 weeks, but triadic synaptic arrangements are formed only by 16 weeks.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005917 Globus Pallidus The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus. Paleostriatum,Pallidum,Pallidums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012834 Silver An element with the atomic symbol Ag, atomic number 47, and atomic weight 107.87. It is a soft metal that is used medically in surgical instruments, dental prostheses, and alloys. Long-continued use of silver salts can lead to a form of poisoning known as ARGYRIA.
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

J Cano, and P Pasik, and T Pasik
January 1974, Journal fur Hirnforschung,
J Cano, and P Pasik, and T Pasik
November 1982, The Journal of comparative neurology,
J Cano, and P Pasik, and T Pasik
March 1980, The Journal of comparative neurology,
J Cano, and P Pasik, and T Pasik
March 1981, The Journal of comparative neurology,
J Cano, and P Pasik, and T Pasik
August 1981, Science (New York, N.Y.),
J Cano, and P Pasik, and T Pasik
July 1943, Journal of neurology and psychiatry,
J Cano, and P Pasik, and T Pasik
November 1991, Journal of neurocytology,
Copied contents to your clipboard!