Domain VI of Escherichia coli 23 S ribosomal RNA. Structure, assembly and function. 1988

H Leffers, and J Egebjerg, and A Andersen, and T Christensen, and R A Garrett
Biostructural Chemistry Kemisk Institut, Aarhus Universitet, Denmark.

Domain VI at the 3' end of the 23 S ribosomal RNA from Escherichia coli was prepared using the in vitro T7 RNA polymerase system. Its structure was examined by probing with ribonucleases and chemical reagents, including a psoralen derivative, of various nucleotide specificities, using a reverse transcriptase procedure for analysis. The data provided support for the most recent secondary structure derived from phylogenetic sequence comparisons and for additional structuring that was inferred from earlier experimental data. Moreover, the structure was essentially the same in the free domain, in renatured 23 S RNA and in 50 S subunits. Protein L3 bound to the isolated domain and its binding site was located at a long-range double helix containing a large internal loop. This structure is unusual for a protein-RNA binding site and it may characterize a new (third) class of site. Protein L3 has been implicated, together with L24, in initiating assembly of the 50 S subunit and it shares the exceptional property with L24 that it binds adjacent to the junction of two RNA domains from where it can maximally influence RNA folding. Protein L6 also assembled to domain VI and, in a control experiment, protein L2 bound to isolated domain IV. Domain VI was largely inaccessible in the 50 S subunit and the few accessible RNA sites occurred mainly within conserved sequence regions that constitute potential functional sites. alpha-Sarcin inactivates ribosomes by cutting at one of these sites in 50 S subunits; it also recognized the same site in the free 23 S RNA and in the free domain. Both the EF-Tu ternary complex, and the EF-G ternary complex stabilized by fusidic acid or by a non-hydrolyzable GTP derivative, inhibited alpha-sarcin attack while non-enzymatically bound tRNA did not, thus providing evidence, more direct than before, for the involvement of the RNA region in a common elongation factor binding site.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012338 RNA, Ribosomal, 23S Constituent of 50S subunit of prokaryotic ribosomes containing about 3200 nucleotides. 23S rRNA is involved in the initiation of polypeptide synthesis. 23S Ribosomal RNA,23S rRNA,RNA, 23S Ribosomal,Ribosomal RNA, 23S,rRNA, 23S
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

H Leffers, and J Egebjerg, and A Andersen, and T Christensen, and R A Garrett
November 1979, FEBS letters,
H Leffers, and J Egebjerg, and A Andersen, and T Christensen, and R A Garrett
August 1983, Journal of molecular biology,
H Leffers, and J Egebjerg, and A Andersen, and T Christensen, and R A Garrett
November 1984, Journal of molecular biology,
H Leffers, and J Egebjerg, and A Andersen, and T Christensen, and R A Garrett
July 1995, The Journal of biological chemistry,
H Leffers, and J Egebjerg, and A Andersen, and T Christensen, and R A Garrett
June 2000, Journal of molecular biology,
H Leffers, and J Egebjerg, and A Andersen, and T Christensen, and R A Garrett
March 2002, The Journal of biological chemistry,
H Leffers, and J Egebjerg, and A Andersen, and T Christensen, and R A Garrett
December 1985, Journal of molecular biology,
H Leffers, and J Egebjerg, and A Andersen, and T Christensen, and R A Garrett
December 1981, The Journal of biological chemistry,
H Leffers, and J Egebjerg, and A Andersen, and T Christensen, and R A Garrett
September 1974, Journal of molecular biology,
H Leffers, and J Egebjerg, and A Andersen, and T Christensen, and R A Garrett
May 1984, The Journal of biological chemistry,
Copied contents to your clipboard!