Distribution of galanin-like immunoreactivity in baboon brain. 1988

M F Beal, and S M Gabriel, and K J Swartz, and U M MacGarvey
Department of Neurology, Massachusetts General Hospital, Boston, MA 02114.

Galanin-like immunoreactivity (GLI) was measured in baboon brains using a recently developed radioimmunoassay. Concentrations were measured in 10 cortical regions, hippocampus and 20 subcortical regions. The highest concentrations were in the median eminence, followed by hypothalamus, locus ceruleus, periaqueductal grey, bed nucleus of the stria terminalis, septum, amygdala and substantia innominata. Substantial amounts were also measurable in the inferior olive, basal ganglia and thalamus with very low levels in cerebellum. In cerebral cortex, concentrations were lowest in occipital cortex and highest in dorsolateral frontal cortex. Hippocampal concentrations were higher than those in cerebral cortex. Concentrations of GLI in cerebral cortex were significantly correlated with choline acetyltransferase activity and substance P immunoreactivity but not with concentrations of somatostatin or neuropeptide Y. Approximately half the GLI coeluted with porcine standards while half corresponded to a lower molecular weight species on gel permeation chromatography. With reverse phase high performance liquid chromatography (HPLC) the majority of the immunoreactivity eluted just in front of the porcine standard with a smaller amount coeluting with the porcine standard. These results show a widespread distribution of GLI in primate brain and are in accord with previous immunocytochemical studies.

UI MeSH Term Description Entries
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010215 Papio A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of five named species: PAPIO URSINUS (chacma baboon), PAPIO CYNOCEPHALUS (yellow baboon), PAPIO PAPIO (western baboon), PAPIO ANUBIS (or olive baboon), and PAPIO HAMADRYAS (hamadryas baboon). Members of the Papio genus inhabit open woodland, savannahs, grassland, and rocky hill country. Some authors consider MANDRILLUS a subgenus of Papio. Baboons,Baboons, Savanna,Savanna Baboons,Baboon,Baboon, Savanna,Papios,Savanna Baboon
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance

Related Publications

M F Beal, and S M Gabriel, and K J Swartz, and U M MacGarvey
December 1989, Brain research,
M F Beal, and S M Gabriel, and K J Swartz, and U M MacGarvey
August 1993, Cell and tissue research,
M F Beal, and S M Gabriel, and K J Swartz, and U M MacGarvey
November 1994, The Journal of comparative neurology,
M F Beal, and S M Gabriel, and K J Swartz, and U M MacGarvey
March 1990, Neuroscience letters,
M F Beal, and S M Gabriel, and K J Swartz, and U M MacGarvey
August 1991, The Journal of comparative neurology,
M F Beal, and S M Gabriel, and K J Swartz, and U M MacGarvey
June 2005, The Journal of comparative neurology,
M F Beal, and S M Gabriel, and K J Swartz, and U M MacGarvey
December 2006, General and comparative endocrinology,
M F Beal, and S M Gabriel, and K J Swartz, and U M MacGarvey
March 1990, Regulatory peptides,
M F Beal, and S M Gabriel, and K J Swartz, and U M MacGarvey
January 1986, Peptides,
M F Beal, and S M Gabriel, and K J Swartz, and U M MacGarvey
June 1992, Brain research. Developmental brain research,
Copied contents to your clipboard!