Reversibility of nucleotide incorporation by Escherichia coli RNA polymerase, and its effect on fidelity. 1989

J D Kahn, and J E Hearst
Department of Chemistry, University of California, Berkeley 94720.

During transcription, Escherichia coli RNA polymerase is capable of removing the nucleotide that it has just added to a growing RNA chain, and this removal depends on the presence of small concentrations of pyrophosphate. Chemically, the removal reaction is simply the reversal of the incorporation reaction, and we have observed the generation of free triphosphate as a result. After the removal the enzyme can continue synthesis. To test whether this reaction can provide an error correction mechanism, misincorporation rates were measured at a single position in an RNA transcript by withholding the correct nucleotide for that position, measuring the amount of readthrough transcript, and analyzing the readthrough transcripts with nearest-neighbor analysis and enzymatic RNA sequencing. The removal of pyrophosphate increases the rate of misincorporation. We present a theory that explains how reversible incorporation can increase the available discrimination free energy between correct and incorrect nucleotides and therefore may increase the fidelity of transcription. The formation of a covalent phosphodiester bond allows discrimination on the basis of helical structure as well as base-pairing. We propose that the important discrimination step is the translocation of the enzyme from one site on the DNA template to the next, and that reversible incorporation is necessary in order to take full advantage of the maximum discrimination free energy.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

J D Kahn, and J E Hearst
January 1980, FEBS letters,
J D Kahn, and J E Hearst
January 2013, Transcription,
J D Kahn, and J E Hearst
October 2001, The Journal of biological chemistry,
J D Kahn, and J E Hearst
October 2004, Biochemistry,
J D Kahn, and J E Hearst
February 1994, Computer applications in the biosciences : CABIOS,
J D Kahn, and J E Hearst
October 1975, Journal of molecular biology,
Copied contents to your clipboard!