Herpes simplex virus type 1 (HSV-1)-derived amplicon vectors. 2014

Matias E Melendez, and Cornel Fraefel, and Alberto L Epstein
Molecular Oncology Research Center, Barretos Cancer Hospital, 14784-400, Barretos, SP, Brazil.

Amplicons are defective, helper-dependent, herpes simplex virus type 1 (HSV-1)-derived vectors. The main interest of these vectors as gene transfer tools stems from the fact that the amplicon vector genomes do not carry protein-encoding viral sequences. Consequently, they are completely safe for the host and nontoxic for the infected cells. Moreover, the complete absence of virus genes provides space to accommodate very large foreign DNA sequences, up to almost 150-kb, the size of the virus genome. This large transgene capacity can be used to deliver complete gene loci, including introns and exons, as well as long regulatory sequences, conferring tissue-specific expression or stable maintenance of the transgene in proliferating cells. During many years the development of these vectors and their application in gene transfer experiments was hindered by the presence of contaminating toxic helper virus particles in the vector stocks. In recent years, however, two different methodologies have been developed that allow generating amplicon stocks either completely free of helper particles or only faintly contaminated with fully defective helper particles. This chapter describes these two methodologies.

UI MeSH Term Description Entries
D008967 Molecular Biology A discipline concerned with studying biological phenomena in terms of the chemical and physical interactions of molecules. Biochemical Genetics,Biology, Molecular,Genetics, Biochemical,Genetics, Molecular,Molecular Genetics,Biochemical Genetic,Genetic, Biochemical,Genetic, Molecular,Molecular Genetic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014709 Vero Cells A CELL LINE derived from the kidney of the African green (vervet) monkey, (CHLOROCEBUS AETHIOPS) used primarily in virus replication studies and plaque assays. Cell, Vero,Cells, Vero,Vero Cell
D018014 Gene Transfer Techniques The introduction of functional (usually cloned) GENES into cells. A variety of techniques and naturally occurring processes are used for the gene transfer such as cell hybridization, LIPOSOMES or microcell-mediated gene transfer, ELECTROPORATION, chromosome-mediated gene transfer, TRANSFECTION, and GENETIC TRANSDUCTION. Gene transfer may result in genetically transformed cells and individual organisms. Gene Delivery Systems,Gene Transfer Technique,Transgenesis,Delivery System, Gene,Delivery Systems, Gene,Gene Delivery System,Technique, Gene Transfer,Techniques, Gene Transfer,Transfer Technique, Gene,Transfer Techniques, Gene
D018259 Herpesvirus 1, Human The type species of SIMPLEXVIRUS causing most forms of non-genital herpes simplex in humans. Primary infection occurs mainly in infants and young children and then the virus becomes latent in the dorsal root ganglion. It then is periodically reactivated throughout life causing mostly benign conditions. HSV-1,Herpes Simplex Virus 1,HHV-1,Herpes Simplex Virus Type 1,Herpesvirus 1 (alpha), Human,Human Herpesvirus 1

Related Publications

Matias E Melendez, and Cornel Fraefel, and Alberto L Epstein
January 2020, Methods in molecular biology (Clifton, N.J.),
Matias E Melendez, and Cornel Fraefel, and Alberto L Epstein
January 2015, Methods in molecular biology (Clifton, N.J.),
Matias E Melendez, and Cornel Fraefel, and Alberto L Epstein
January 2011, Methods in molecular biology (Clifton, N.J.),
Matias E Melendez, and Cornel Fraefel, and Alberto L Epstein
February 2005, Pathologie-biologie,
Matias E Melendez, and Cornel Fraefel, and Alberto L Epstein
January 2016, PloS one,
Matias E Melendez, and Cornel Fraefel, and Alberto L Epstein
July 2022, International journal of molecular sciences,
Matias E Melendez, and Cornel Fraefel, and Alberto L Epstein
January 1994, Methods in cell biology,
Matias E Melendez, and Cornel Fraefel, and Alberto L Epstein
August 2005, Gene therapy,
Matias E Melendez, and Cornel Fraefel, and Alberto L Epstein
January 2015, Methods in molecular biology (Clifton, N.J.),
Matias E Melendez, and Cornel Fraefel, and Alberto L Epstein
April 1995, Human gene therapy,
Copied contents to your clipboard!