ESR investigation of sucrose radicals produced by 0.25-4.5 Gy doses of X-ray irradiation. 2014

Kouichi Nakagawa, and Ken Kobukai, and Yuzuru Sato
Department of Radiological Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cyo, Hirosaki, 036-8564, Japan nakagawa@cc.hirosaki-u.ac.jp.

We investigated stable radicals produced by 0.25-4.5 Gy doses of X-ray irradiation of sucrose. Electron spin resonance (ESR) is able to observe the signal from sucrose irradiated at 0.25 Gy. The ESR signal intensity of the radicals is related to the accumulated dose, and it increases linearly with increasing absorbed dose. In addition, we examined the effect of dose rate (0.50-1.5 Gy/min) on the signal intensity of the irradiated sucrose. The stable radical production did not exhibit dose rate dependence. In addition, the peak corresponding to the irradiated glucose was observed to increase more with increasing absorbed dose than the peak corresponding to irradiated fructose. Therefore, the present ESR results regarding the 0.25-4.5 Gy irradiation of sucrose provide new insights into a possible sucrose ESR dosimeter.

UI MeSH Term Description Entries
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D005632 Fructose A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding. Levulose,Apir Levulosa,Fleboplast Levulosa,Levulosa,Levulosa Baxter,Levulosa Braun,Levulosa Grifols,Levulosa Ibys,Levulosa Ife,Levulosa Mein,Levulosado Bieffe Medit,Levulosado Braun,Levulosado Vitulia,Plast Apyr Levulosa Mein,Levulosa, Apir,Levulosa, Fleboplast
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D013395 Sucrose A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. Saccharose

Related Publications

Kouichi Nakagawa, and Ken Kobukai, and Yuzuru Sato
May 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
Kouichi Nakagawa, and Ken Kobukai, and Yuzuru Sato
June 2020, European radiology experimental,
Kouichi Nakagawa, and Ken Kobukai, and Yuzuru Sato
January 1994, Jikken dobutsu. Experimental animals,
Kouichi Nakagawa, and Ken Kobukai, and Yuzuru Sato
January 1950, Archives des sciences physiologiques,
Kouichi Nakagawa, and Ken Kobukai, and Yuzuru Sato
February 1968, Journal of comparative and physiological psychology,
Kouichi Nakagawa, and Ken Kobukai, and Yuzuru Sato
May 2021, Molecular medicine reports,
Kouichi Nakagawa, and Ken Kobukai, and Yuzuru Sato
May 1948, The Australian journal of experimental biology and medical science,
Kouichi Nakagawa, and Ken Kobukai, and Yuzuru Sato
November 1961, The Journal of investigative dermatology,
Kouichi Nakagawa, and Ken Kobukai, and Yuzuru Sato
October 1957, Strahlentherapie,
Kouichi Nakagawa, and Ken Kobukai, and Yuzuru Sato
January 2010, Doklady. Biochemistry and biophysics,
Copied contents to your clipboard!