Characterization of nicotinic acetylcholine receptor channels of the TE671 human medulloblastoma clonal line. 1989

R E Oswald, and R L Papke, and R J Lukas
Department of Pharmacology, College of Veterinary Medicine, Cornell University, Ithaca, NY.

Acetylcholine (ACh)-gated single channel events were studied on the TE671 human medulloblastoma clonal cell line by the use of the cell-attached patch clamp technique. Channel activity was detected (86% probability) in the presence of 0.1-2 microM ACh but not (0% probability) in the absence of agonist or in the presence of 1 microM alpha-bungarotoxin (Bgt). This effect of Bgt was reversible within 1 h. The most prominent channel type had a conductance of 50 pS. The kinetics of opening and closing of the channel were similar to that for skeletal muscle nicotinic acetylcholine receptors.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008527 Medulloblastoma A malignant neoplasm that may be classified either as a glioma or as a primitive neuroectodermal tumor of childhood (see NEUROECTODERMAL TUMOR, PRIMITIVE). The tumor occurs most frequently in the first decade of life with the most typical location being the cerebellar vermis. Histologic features include a high degree of cellularity, frequent mitotic figures, and a tendency for the cells to organize into sheets or form rosettes. Medulloblastoma have a high propensity to spread throughout the craniospinal intradural axis. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2060-1) Arachnoidal Cerebellar Sarcoma, Circumscribed,Medulloblastoma, Desmoplastic,Medullomyoblastoma,Sarcoma, Cerebellar, Circumscribed Arachnoidal,Medulloblastoma, Adult,Medulloblastoma, Childhood,Melanocytic Medulloblastoma,Adult Medulloblastoma,Adult Medulloblastomas,Childhood Medulloblastoma,Childhood Medulloblastomas,Desmoplastic Medulloblastoma,Desmoplastic Medulloblastomas,Medulloblastoma, Melanocytic,Medulloblastomas,Medulloblastomas, Adult,Medulloblastomas, Childhood,Medulloblastomas, Desmoplastic,Medulloblastomas, Melanocytic,Medullomyoblastomas,Melanocytic Medulloblastomas
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

R E Oswald, and R L Papke, and R J Lukas
March 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R E Oswald, and R L Papke, and R J Lukas
April 1999, European journal of pharmacology,
R E Oswald, and R L Papke, and R J Lukas
February 1990, Brain research. Molecular brain research,
R E Oswald, and R L Papke, and R J Lukas
January 1984, Journal of neuro-oncology,
R E Oswald, and R L Papke, and R J Lukas
October 1989, The Journal of pharmacology and experimental therapeutics,
R E Oswald, and R L Papke, and R J Lukas
July 2002, European journal of pharmacology,
Copied contents to your clipboard!