Competing endogenous RNA: the key to posttranscriptional regulation. 2014

Rituparno Sen, and Suman Ghosal, and Shaoli Das, and Subrata Balti, and Jayprokas Chakrabarti
Gyanxet, BF 286 Salt Lake, Kolkata, West Bengal 700064, India.

Competing endogenous RNA, ceRNA, vie with messenger RNAs (mRNAs) for microRNAs (miRNAs) with shared miRNAs responses elements (MREs) and act as modulator of miRNA by influencing the available level of miRNA. It has recently been discovered that, apart from protein-coding ceRNAs, pseudogenes, long noncoding RNAs (lncRNAs), and circular RNAs act as miRNA "sponges" by sharing common MRE, inhibiting normal miRNA targeting activity on mRNA. These MRE sharing elements form the posttranscriptional ceRNA network to regulate mRNA expression. ceRNAs are widely implicated in many biological processes. Recent studies have identified ceRNAs associated with a number of diseases including cancer. This brief review focuses on the molecular mechanism of ceRNA as part of the complex post-transcriptional regulatory circuit in cell and the impact of ceRNAs in development and disease.

UI MeSH Term Description Entries
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000079962 RNA, Circular RNA molecules in which the 3' and 5' ends are covalently joined to form a closed continuous loop. They are resistant to digestion by EXORIBONUCLEASES. Circular Intronic RNA,Circular RNA,Circular RNAs,Closed Circular RNA,ciRNA,circRNA,circRNAs,Circular RNA, Closed,Intronic RNA, Circular,RNA, Circular Intronic,RNA, Closed Circular,RNAs, Circular
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA

Related Publications

Rituparno Sen, and Suman Ghosal, and Shaoli Das, and Subrata Balti, and Jayprokas Chakrabarti
January 2016, Methods in molecular biology (Clifton, N.J.),
Rituparno Sen, and Suman Ghosal, and Shaoli Das, and Subrata Balti, and Jayprokas Chakrabarti
October 2020, Clinica chimica acta; international journal of clinical chemistry,
Rituparno Sen, and Suman Ghosal, and Shaoli Das, and Subrata Balti, and Jayprokas Chakrabarti
November 2015, Oncology letters,
Rituparno Sen, and Suman Ghosal, and Shaoli Das, and Subrata Balti, and Jayprokas Chakrabarti
January 2012, Bioinformation,
Rituparno Sen, and Suman Ghosal, and Shaoli Das, and Subrata Balti, and Jayprokas Chakrabarti
January 2021, Molecular genetics & genomic medicine,
Rituparno Sen, and Suman Ghosal, and Shaoli Das, and Subrata Balti, and Jayprokas Chakrabarti
November 2018, Pathology, research and practice,
Rituparno Sen, and Suman Ghosal, and Shaoli Das, and Subrata Balti, and Jayprokas Chakrabarti
January 2013, PloS one,
Rituparno Sen, and Suman Ghosal, and Shaoli Das, and Subrata Balti, and Jayprokas Chakrabarti
October 2020, Proceedings of the National Academy of Sciences of the United States of America,
Rituparno Sen, and Suman Ghosal, and Shaoli Das, and Subrata Balti, and Jayprokas Chakrabarti
November 2022, International journal of molecular sciences,
Rituparno Sen, and Suman Ghosal, and Shaoli Das, and Subrata Balti, and Jayprokas Chakrabarti
December 2017, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi,
Copied contents to your clipboard!