N-methyl-D-aspartate activates different channels than do kainate and quisqualate. 1989

J Lerma, and L Kushner, and R S Zukin, and M V Bennett
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461.

In the mammalian central nervous system, the excitatory amino acid transmitter L-glutamate activates three pharmacologically distinguishable receptors, the N-methyl-D-aspartate (NMDA), kainate, and quisqualate receptors. The present paper addresses the issue of whether these three receptors operate independent channels or whether they share channels that may have several conductance substates. The Xenopus oocyte provides a system for expression of exogenous mRNAs that permits detailed study of receptor structure and function. In oocytes injected with rat brain mRNA, NMDA has a stoichiometry of channel activation different from that for kainate and quisqualate. NMDA activates its own channels as indicated by simple summation or near-summation of currents evoked by NMDA with those evoked by quisqualate or kainate. Deviations from summation are ascribable to lack of selectivity in which an agonist at one receptor acts as a weak antagonist at another receptor. A further indication of separate channels is that block of NMDA channels by Mg2+ or phencyclidine has no effect on kainate or quisqualate responses evoked during the block. Interactions of kainate and quisqualate are more complex, but they can be explained by lack of complete specificity of these agonists for their own receptors.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010069 Oxadiazoles Compounds containing five-membered heteroaromatic rings containing two carbons, two nitrogens, and one oxygen atom which exist in various regioisomeric forms. Oxadiazole
D010622 Phencyclidine A hallucinogen formerly used as a veterinary anesthetic, and briefly as a general anesthetic for humans. Phencyclidine is similar to KETAMINE in structure and in many of its effects. Like ketamine, it can produce a dissociative state. It exerts its pharmacological action through inhibition of NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE). As a drug of abuse, it is known as PCP and Angel Dust. 1-(1-Phenylcyclohexyl)piperidine,Angel Dust,CL-395,GP-121,Phencyclidine Hydrobromide,Phencyclidine Hydrochloride,Sernyl,Serylan,CL 395,CL395,Dust, Angel,GP 121,GP121
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical

Related Publications

J Lerma, and L Kushner, and R S Zukin, and M V Bennett
April 1990, Molecular pharmacology,
J Lerma, and L Kushner, and R S Zukin, and M V Bennett
January 1990, Neuroscience,
J Lerma, and L Kushner, and R S Zukin, and M V Bennett
April 1985, The Journal of pharmacology and experimental therapeutics,
J Lerma, and L Kushner, and R S Zukin, and M V Bennett
March 1989, Molecular pharmacology,
J Lerma, and L Kushner, and R S Zukin, and M V Bennett
September 1986, Brain research,
J Lerma, and L Kushner, and R S Zukin, and M V Bennett
January 1989, Synapse (New York, N.Y.),
J Lerma, and L Kushner, and R S Zukin, and M V Bennett
July 1988, Neuroscience letters,
J Lerma, and L Kushner, and R S Zukin, and M V Bennett
March 1991, Experimental neurology,
J Lerma, and L Kushner, and R S Zukin, and M V Bennett
July 1990, Journal of neurochemistry,
Copied contents to your clipboard!