Cav-1 deletion impaired hematopoietic stem cell function. 2014

L Bai, and G Shi, and L Zhang, and F Guan, and Y Ma, and Q Li, and Y-S Cong, and L Zhang
Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, China.

A tightly controlled balance between hematopoietic stem and progenitor cell compartments is required to maintain normal blood cell homeostasis throughout life, and this balance is regulated by intrinsic and extrinsic cellular factors. Cav-1 is a 22-kDa protein that is located in plasma membrane invaginations and is implicated in regulating neural stem cell and embryonic stem cell proliferation. However, the role of Cav-1 in hematopoietic stem cell (HSC) function is largely unknown. In this study, we used Cav-1(-/-) mice to investigate the role of Cav-1 in HSCs function during aging. The results showed that Cav-1(-/-) mice displayed a decreased percentage of B cells and an increased percentage of M cells in the bone marrow and peripheral blood, and these changes were due to an increased number of HSCs. FACS analysis showed that the numbers of Lin(-)Sca1(+)c-kit(+) cells (LSKs), long-term HSCs (LT-HSCs), short-term HSCs and multipotent progenitors were increased in Cav-1(-/-) mice compared with Cav-1(+/+) mice, and this increase became more pronounced with aging. An in vitro clonogenic assay showed that LT-HSCs from Cav-1(-/-) mice had reduced ability to self-renew. Consistently, an in vivo competitive transplantation assay showed that Cav-1(-/-) mice failed to reconstitute hematopoiesis. Moreover, a Cav-1 deletion disrupted the quiescence of LSKs and promoted cell cycle progression through G2/M phase. In addition, we found that Cav-1 deletion impaired the ability of HSCs to differentiate into mature blood cells. Taken together, these data suggest that Cav-1-deficient cells impaired HSCs quiescence and induced environmental alterations, which limited HSCs self-renewal and function.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D016922 Cellular Senescence Process by which cells irreversibly stop dividing and enter a state of permanent growth arrest without undergoing CELL DEATH. Senescence can be induced by DNA DAMAGE or other cellular stresses, such as OXIDATIVE STRESS. Aging, Cell,Cell Aging,Cell Senescence,Replicative Senescence,Senescence, Cellular,Senescence, Replicative,Cell Ageing,Cellular Ageing,Cellular Aging,Ageing, Cell,Ageing, Cellular,Aging, Cellular,Senescence, Cell
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions
D051242 Caveolin 1 A tyrosine phosphoprotein that plays an essential role in CAVEOLAE formation. It binds CHOLESTEROL and is involved in LIPIDS transport, membrane traffic, and SIGNAL TRANSDUCTION. Caveolin-1,VIP21 Protein,Vesicular Integral Membrane Protein 21 kDa,alpha-Caveolin,beta-Caveolin,alpha Caveolin,beta Caveolin
D060833 Cellular Microenvironment Local surroundings with which cells interact by processing various chemical and physical signals, and by contributing their own effects to this environment. Cell Microenvironment,Cell Microenvironments,Cellular Microenvironments,Microenvironment, Cell,Microenvironment, Cellular,Microenvironments, Cell,Microenvironments, Cellular
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out

Related Publications

L Bai, and G Shi, and L Zhang, and F Guan, and Y Ma, and Q Li, and Y-S Cong, and L Zhang
June 2020, Stem cell research,
L Bai, and G Shi, and L Zhang, and F Guan, and Y Ma, and Q Li, and Y-S Cong, and L Zhang
April 2004, Bone marrow transplantation,
L Bai, and G Shi, and L Zhang, and F Guan, and Y Ma, and Q Li, and Y-S Cong, and L Zhang
June 2016, Bone marrow transplantation,
L Bai, and G Shi, and L Zhang, and F Guan, and Y Ma, and Q Li, and Y-S Cong, and L Zhang
July 2005, Experimental hematology,
L Bai, and G Shi, and L Zhang, and F Guan, and Y Ma, and Q Li, and Y-S Cong, and L Zhang
April 2012, Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer,
L Bai, and G Shi, and L Zhang, and F Guan, and Y Ma, and Q Li, and Y-S Cong, and L Zhang
July 2008, Current opinion in hematology,
L Bai, and G Shi, and L Zhang, and F Guan, and Y Ma, and Q Li, and Y-S Cong, and L Zhang
July 2013, Current opinion in hematology,
L Bai, and G Shi, and L Zhang, and F Guan, and Y Ma, and Q Li, and Y-S Cong, and L Zhang
April 2022, Cell stem cell,
L Bai, and G Shi, and L Zhang, and F Guan, and Y Ma, and Q Li, and Y-S Cong, and L Zhang
June 2013, Blood,
L Bai, and G Shi, and L Zhang, and F Guan, and Y Ma, and Q Li, and Y-S Cong, and L Zhang
August 1983, Experimental hematology,
Copied contents to your clipboard!