Distinct roles for hu li tai shao and swallow in cytoskeletal organization during Drosophila oogenesis. 2014

Nancy Jo Pokrywka, and Huadi Zhang, and Kathleen Raley-Susman
Department of Biology, Vassar College, Poughkeepsie, New York.

BACKGROUND Cytoskeletal organization is essential for localization of developmentally significant molecules during Drosophila oogenesis. Swallow (Swa) and an isoform of Hu li tai shao (Ovhts-RC) have been implicated in the organization of actin filaments in developing oocytes but their precise roles have been obscured by the dependence of hts RNA localization on swa function. The functional significance of hts RNA localization in the oocyte has not been established. RESULTS In this study we examine Ovhts-RC distribution and cytoskeletal organization under conditions in which Swa protein and/or hts RNA localization are perturbed. We find Swa is required for overall actin organization and for the maintenance of a distinct subset of microtubules in the oocyte. hts RNA localization modulates the distribution of Ovhts-RC in the oocyte and, in turn, local actin filament proliferation. CONCLUSIONS Our results support separate contributions of Swa and hts RNA localization to actin organization during oogenesis. Swa is crucial for the organization of actin networks that lead to the formation of a specialized microtubule population, while Ovhts-RC acts to modulate spatially restricted actin filament growth at the oocyte cortex. This suggests RNA localization can lead to modifications of both the actin and microtubule cytoskeletons at specific subcellular locales.

UI MeSH Term Description Entries
D009866 Oogenesis The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM). Oogeneses
D002148 Calmodulin-Binding Proteins Proteins which bind calmodulin. They are found in many tissues and have a variety of functions including F-actin cross-linking properties, inhibition of cyclic nucleotide phosphodiesterase and calcium and magnesium ATPases. Caldesmon,Calspectin,CaM-BP(80),Caldesmon (77),Calmodulin Binding Proteins,Proteins, Calmodulin-Binding
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein
D029721 Drosophila Proteins Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development. Drosophila melanogaster Proteins,Proteins, Drosophila,Proteins, Drosophila melanogaster,melanogaster Proteins, Drosophila

Related Publications

Nancy Jo Pokrywka, and Huadi Zhang, and Kathleen Raley-Susman
October 2004, Genesis (New York, N.Y. : 2000),
Nancy Jo Pokrywka, and Huadi Zhang, and Kathleen Raley-Susman
December 1992, Genes & development,
Nancy Jo Pokrywka, and Huadi Zhang, and Kathleen Raley-Susman
May 2005, Cell biology international,
Nancy Jo Pokrywka, and Huadi Zhang, and Kathleen Raley-Susman
October 1994, Science (New York, N.Y.),
Nancy Jo Pokrywka, and Huadi Zhang, and Kathleen Raley-Susman
January 2011, Micron (Oxford, England : 1993),
Nancy Jo Pokrywka, and Huadi Zhang, and Kathleen Raley-Susman
April 2001, Developmental biology,
Nancy Jo Pokrywka, and Huadi Zhang, and Kathleen Raley-Susman
October 1994, Developmental biology,
Nancy Jo Pokrywka, and Huadi Zhang, and Kathleen Raley-Susman
November 2016, Developmental dynamics : an official publication of the American Association of Anatomists,
Copied contents to your clipboard!