Secretory leukocyte protease inhibitor binding to mRNA and DNA as a possible cause of toxicity to Escherichia coli. 1989

K W Miller, and R J Evans, and S P Eisenberg, and R C Thompson
Human Pharmaceuticals Section, Synergen, Inc., Boulder, Colorado 80301.

The expression of the positively charged human protein secretory leukocyte protease inhibitor (SLPI) in Escherichia coli causes severe cellular toxicity. After induction of SLPI synthesis in a high-level-expression strain, SGE61, the growth of the strain is arrested and total protein and RNA synthesis rates decline by 60 to 70%. The mechanism of SLPI-mediated inhibition of macromolecular synthesis was examined in cell-free transcription-translation systems. SLPI proved to be a potent inhibitor of translation in vitro. When SLPI was added to translation reactions at SLPI/mRNA ratios attained during maximal SLPI accumulation in SGE61, translation of a test mRNA was inhibited by 75%. The mechanism of translation inhibition was deduced from in vitro experiments showing that SLPI bound to mRNA and interfered with the interaction of RNA-metabolizing enzymes, such as RNase. In addition, SLPI bound to DNA in vitro, but transcription was not inhibited as strongly in cell-free reactions as it was in SGE61. Similar nucleic acid-binding and translation inhibition properties were displayed in vitro by another basic protein, chicken egg white lysozyme, but were not displayed by the relatively acidic protein bovine serum albumin. On the basis of these results, we concluded that SLPI binds to nucleic acids via charge interactions and inhibits translation by competing with ribosomes for binding to mRNA. Since SLPI-mRNA and SLPI-DNA binding occurred at SLPI/mRNA and SLPI/DNA ratios existing in SGE61, nucleic acid binding may contribute to the toxicity of SLPI to E. coli. These results indicate that, in general, high-level expression of basic recombinant proteins in E. coli may be problematic.

UI MeSH Term Description Entries
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome

Related Publications

K W Miller, and R J Evans, and S P Eisenberg, and R C Thompson
February 2021, Journal of reproductive immunology,
K W Miller, and R J Evans, and S P Eisenberg, and R C Thompson
February 2011, Respirology (Carlton, Vic.),
K W Miller, and R J Evans, and S P Eisenberg, and R C Thompson
December 2004, Annals of the New York Academy of Sciences,
K W Miller, and R J Evans, and S P Eisenberg, and R C Thompson
January 1993, Agents and actions. Supplements,
K W Miller, and R J Evans, and S P Eisenberg, and R C Thompson
July 2008, Molecular reproduction and development,
K W Miller, and R J Evans, and S P Eisenberg, and R C Thompson
January 1988, Advances in experimental medicine and biology,
K W Miller, and R J Evans, and S P Eisenberg, and R C Thompson
May 1990, The Journal of biological chemistry,
K W Miller, and R J Evans, and S P Eisenberg, and R C Thompson
July 2003, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases,
K W Miller, and R J Evans, and S P Eisenberg, and R C Thompson
June 2000, FEBS letters,
K W Miller, and R J Evans, and S P Eisenberg, and R C Thompson
March 2008, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!