Grass carp reovirus induces apoptosis and oxidative stress in grass carp (Ctenopharyngodon idellus) kidney cell line. 2014

Rui Jia, and Li-Ping Cao, and Jin-Liang Du, and Ying-Juan Liu, and Jia-Hao Wang, and Galina Jeney, and Guo-Jun Yin
Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

Grass carp hemorrhage is an acute contagious disease caused by grass carp reovirus (GCRV). The pathogenesis of GCRV and the relationship between GCRV and the host cells remain unclear. The aim of the present study was to investigate the relations among apoptosis, intracellular oxidative stress and virus replication in GCRV infected-cells. The results showed that GCRV induced activation of caspase proteases as early as 12 h, and reached maximum activities at 24 h or 48 h post-infection in a grass carp kidney cell line (CIK cells). Meanwhile, the levels of tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) also were increased in GCRV-infected CIK cells and showed a statistically significant difference from 24 h to 96 h post-infection. The infection of GCRV caused the destruction of entire monolayer and the death of host cells. Accompanied by the infection, a severe oxidative stress occurred, which led to extensive loss of antioxidants and formation of lipid peroxidation after 48 h post-infection. These data suggested that the apoptosis which was triggered at an early stage (12-24 h) in the viral infection cycle, might be independent of virus replication, while the oxidative stress induced by GCRV was mostly related to the virus replication.

UI MeSH Term Description Entries
D012087 Reoviridae A family of unenveloped RNA viruses with cubic symmetry. The twelve genera include ORTHOREOVIRUS; ORBIVIRUS; COLTIVIRUS; ROTAVIRUS; Aquareovirus, Cypovirus, Phytoreovirus, Fijivirus, Seadornavirus, Idnoreovirus, Mycoreovirus, and Oryzavirus. Aquareovirus,Cypovirus,Cytoplasmic Polyhedrosis Viruses,Fijivirus,Idnoreovirus,Mycoreovirus,Oryzavirus,Phytoreovirus,Reoviruses, Aquatic,Respiratory Enteric Orphan Viruses,Seadornavirus,Aquareoviruses,Aquatic Reovirus,Aquatic Reoviruses,Cypoviruses,Cytoplasmic Polyhedrosis Virus,Fijiviruses,Idnoreoviruses,Mycoreoviruses,Oryzaviruses,Phytoreoviruses,Polyhedrosis Virus, Cytoplasmic,Polyhedrosis Viruses, Cytoplasmic,Reovirus, Aquatic,Seadornaviruses
D012088 Reoviridae Infections Infections produced by reoviruses, general or unspecified. Reovirus Infections,Infections, Reoviridae,Infection, Reoviridae,Infection, Reovirus,Infections, Reovirus,Reoviridae Infection,Reovirus Infection
D002347 Carps Common name for a number of different species of fish in the family Cyprinidae. This includes, among others, the common carp, crucian carp, grass carp, and silver carp. Carassius carassius,Crucian Carp,Cyprinus,Grass Carp,Carp,Ctenopharyngodon idellus,Cyprinus carpio,Hypophthalmichthys molitrix,Koi Carp,Silver Carp,Carp, Crucian,Carp, Grass,Carp, Koi,Carp, Silver,Carps, Crucian,Carps, Grass,Carps, Silver,Crucian Carps,Grass Carps,Silver Carps
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005393 Fish Diseases Diseases of freshwater, marine, hatchery or aquarium fish. This term includes diseases of both teleosts (true fish) and elasmobranchs (sharks, rays and skates). Disease, Fish,Diseases, Fish,Fish Disease
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Rui Jia, and Li-Ping Cao, and Jin-Liang Du, and Ying-Juan Liu, and Jia-Hao Wang, and Galina Jeney, and Guo-Jun Yin
February 2006, Environmental toxicology,
Rui Jia, and Li-Ping Cao, and Jin-Liang Du, and Ying-Juan Liu, and Jia-Hao Wang, and Galina Jeney, and Guo-Jun Yin
January 2006, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP,
Rui Jia, and Li-Ping Cao, and Jin-Liang Du, and Ying-Juan Liu, and Jia-Hao Wang, and Galina Jeney, and Guo-Jun Yin
February 2021, Microbial pathogenesis,
Rui Jia, and Li-Ping Cao, and Jin-Liang Du, and Ying-Juan Liu, and Jia-Hao Wang, and Galina Jeney, and Guo-Jun Yin
December 2015, Fish & shellfish immunology,
Rui Jia, and Li-Ping Cao, and Jin-Liang Du, and Ying-Juan Liu, and Jia-Hao Wang, and Galina Jeney, and Guo-Jun Yin
January 2021, Environmental microbiology,
Rui Jia, and Li-Ping Cao, and Jin-Liang Du, and Ying-Juan Liu, and Jia-Hao Wang, and Galina Jeney, and Guo-Jun Yin
February 2023, Environmental science and pollution research international,
Rui Jia, and Li-Ping Cao, and Jin-Liang Du, and Ying-Juan Liu, and Jia-Hao Wang, and Galina Jeney, and Guo-Jun Yin
October 2020, Food & function,
Rui Jia, and Li-Ping Cao, and Jin-Liang Du, and Ying-Juan Liu, and Jia-Hao Wang, and Galina Jeney, and Guo-Jun Yin
April 2017, Fish & shellfish immunology,
Rui Jia, and Li-Ping Cao, and Jin-Liang Du, and Ying-Juan Liu, and Jia-Hao Wang, and Galina Jeney, and Guo-Jun Yin
April 2020, Aquaculture (Amsterdam, Netherlands),
Rui Jia, and Li-Ping Cao, and Jin-Liang Du, and Ying-Juan Liu, and Jia-Hao Wang, and Galina Jeney, and Guo-Jun Yin
March 2018, Fish & shellfish immunology,
Copied contents to your clipboard!