Synthesis, crystal structure and biological evaluation of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. 2014

Imtiaz Khan, and Sumera Zaib, and Aliya Ibrar, and Nasim Hasan Rama, and Jim Simpson, and Jamshed Iqbal
Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.

Nitrogen-containing heterocycles are of particular interest and significant importance for the discovery of potent bioactive agents in pharmaceutical industry. The present study reports the synthesis of a library of new conjugated heterocycles including 3,6-disubstituted-1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazoles (4a-g and 5a-e) and 3,6-disubstituted-1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazines (6a-h), by cyclocondensation reaction of 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol 3 with various substituted aromatic acids and phenacyl bromides, respectively. The structures of newly synthesized compounds were characterized by elemental analysis, IR, (1)H and (13)C NMR spectroscopy and in case of 4c by X-ray crystallographic analysis. Newly synthesized triazolothiadiazoles and thiadiazines were screened for acetyl- and butyryl-cholinesterases and alkaline phosphatase inhibition. Almost all of the compounds showed good to excellent activities against acetylcholinesterase more than the reference drugs. Compound 5d exhibited IC50 value 0.77 ± 0.08 μM against acetylcholinesterase and 4a showed IC50 9.57 ± 1.42 μM against butyrylcholinesterase. Among all the tested compounds, 4a also proved as excellent inhibitor of alkaline phosphatase with IC50 0.92 ± 0.03 μM. These heteroaromatic hybrid structures were also tested for their anticancer activity against lung carcinoma (H157) and kidney fibroblast (BHK-21) cell lines and leishmanias. Variable cell growth inhibitory activities were obtained and many compounds exhibit potent %inhibition.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D002091 Butyrylcholinesterase An aspect of cholinesterase (EC 3.1.1.8). Pseudocholinesterase,Benzoylcholinesterase,Butyrylthiocholinesterase
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004353 Drug Evaluation, Preclinical Preclinical testing of drugs in experimental animals or in vitro for their biological and toxic effects and potential clinical applications. Drug Screening,Evaluation Studies, Drug, Pre-Clinical,Drug Evaluation Studies, Preclinical,Drug Evaluations, Preclinical,Evaluation Studies, Drug, Preclinical,Evaluation, Preclinical Drug,Evaluations, Preclinical Drug,Medicinal Plants Testing, Preclinical,Preclinical Drug Evaluation,Preclinical Drug Evaluations,Drug Screenings,Screening, Drug,Screenings, Drug
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy

Related Publications

Imtiaz Khan, and Sumera Zaib, and Aliya Ibrar, and Nasim Hasan Rama, and Jim Simpson, and Jamshed Iqbal
April 2007, European journal of medicinal chemistry,
Imtiaz Khan, and Sumera Zaib, and Aliya Ibrar, and Nasim Hasan Rama, and Jim Simpson, and Jamshed Iqbal
April 2008, European journal of medicinal chemistry,
Imtiaz Khan, and Sumera Zaib, and Aliya Ibrar, and Nasim Hasan Rama, and Jim Simpson, and Jamshed Iqbal
August 2011, Bioorganic & medicinal chemistry,
Imtiaz Khan, and Sumera Zaib, and Aliya Ibrar, and Nasim Hasan Rama, and Jim Simpson, and Jamshed Iqbal
January 1989, Farmaco (Societa chimica italiana : 1989),
Imtiaz Khan, and Sumera Zaib, and Aliya Ibrar, and Nasim Hasan Rama, and Jim Simpson, and Jamshed Iqbal
March 2010, Journal of agricultural and food chemistry,
Imtiaz Khan, and Sumera Zaib, and Aliya Ibrar, and Nasim Hasan Rama, and Jim Simpson, and Jamshed Iqbal
October 2015, European journal of medicinal chemistry,
Imtiaz Khan, and Sumera Zaib, and Aliya Ibrar, and Nasim Hasan Rama, and Jim Simpson, and Jamshed Iqbal
July 2010, European journal of medicinal chemistry,
Imtiaz Khan, and Sumera Zaib, and Aliya Ibrar, and Nasim Hasan Rama, and Jim Simpson, and Jamshed Iqbal
March 2011, Acta chimica Slovenica,
Imtiaz Khan, and Sumera Zaib, and Aliya Ibrar, and Nasim Hasan Rama, and Jim Simpson, and Jamshed Iqbal
January 2012, ISRN organic chemistry,
Imtiaz Khan, and Sumera Zaib, and Aliya Ibrar, and Nasim Hasan Rama, and Jim Simpson, and Jamshed Iqbal
September 2010, Acta chimica Slovenica,
Copied contents to your clipboard!