Thalamic connections of the cortex of the superior temporal sulcus in the rhesus monkey. 1989

E H Yeterian, and D N Pandya
Department of Psychology, Colby College, Waterville, Maine 04901.

The thalamocortical connections of the superior temporal sulcus (STS) were studied by means of the WGA-HRP retrograde tracing technique. The results indicate that the distribution of thalamic projections varies along the rostral-caudal dimension of the STS. Thus the rostral portion of the upper bank receives input primarily from the medialmost portion of the medial pulvinar (PM) nucleus. The middle region of the upper bank receives projections from medial and central portions of the PM nucleus, and also from the oral pulvinar, limitans, suprageniculate, medial geniculate, and dorsomedial nuclei. The cortex of the caudal portion of the upper bank has basically similar thalamic input; however, the projections from the PM nucleus originate in central and lateral portions. Additionally, there are projections from the lateral pulvinar (PL), ventroposterolateral, central lateral, parafascicular, and paracentral nuclei. In contrast to the dorsal bank, the cortex of the ventral bank of the STS receives somewhat different and less extensive thalamic input. The rostral portion of the lower bank receives projections only from the ventromedial sector of the PM nucleus, whereas the middle portion of the lower bank receives projections from the PL and the inferior pulvinar nuclei as well as from the PM nucleus. The upper bank of the STS, on the basis of physiological and anatomical studies (Jones and Powell, '70; Seltzer and Pandya, '78; Gross et al., '81; Baylis et al., '87), has been shown to contain multimodal areas. The present data indicate that the multimodal region of the STS has a preferential relationship with the central sector of the PM nucleus.

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013702 Temporal Lobe Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE. Anterior Temporal Lobe,Brodmann Area 20,Brodmann Area 21,Brodmann Area 22,Brodmann Area 37,Brodmann Area 38,Brodmann Area 52,Brodmann's Area 20,Brodmann's Area 21,Brodmann's Area 22,Brodmann's Area 37,Brodmann's Area 38,Brodmann's Area 52,Inferior Temporal Gyrus,Middle Temporal Gyrus,Parainsular Area,Fusiform Gyrus,Gyrus Fusiformis,Gyrus Temporalis Superior,Inferior Horn of Lateral Ventricle,Inferior Horn of the Lateral Ventricle,Lateral Occipito-Temporal Gyrus,Lateral Occipitotemporal Gyrus,Occipitotemporal Gyrus,Planum Polare,Superior Temporal Gyrus,Temporal Cortex,Temporal Gyrus,Temporal Horn,Temporal Horn of the Lateral Ventricle,Temporal Operculum,Temporal Region,Temporal Sulcus,Anterior Temporal Lobes,Area 20, Brodmann,Area 20, Brodmann's,Area 21, Brodmann,Area 21, Brodmann's,Area 22, Brodmann,Area 22, Brodmann's,Area 37, Brodmann,Area 37, Brodmann's,Area 38, Brodmann,Area 38, Brodmann's,Area 52, Brodmann,Area 52, Brodmann's,Area, Parainsular,Areas, Parainsular,Brodmanns Area 20,Brodmanns Area 21,Brodmanns Area 22,Brodmanns Area 37,Brodmanns Area 38,Brodmanns Area 52,Cortex, Temporal,Gyrus, Fusiform,Gyrus, Inferior Temporal,Gyrus, Lateral Occipito-Temporal,Gyrus, Lateral Occipitotemporal,Gyrus, Middle Temporal,Gyrus, Occipitotemporal,Gyrus, Superior Temporal,Gyrus, Temporal,Horn, Temporal,Lateral Occipito Temporal Gyrus,Lobe, Anterior Temporal,Lobe, Temporal,Occipito-Temporal Gyrus, Lateral,Occipitotemporal Gyrus, Lateral,Operculum, Temporal,Parainsular Areas,Region, Temporal,Sulcus, Temporal,Temporal Cortices,Temporal Gyrus, Inferior,Temporal Gyrus, Middle,Temporal Gyrus, Superior,Temporal Horns,Temporal Lobe, Anterior,Temporal Lobes,Temporal Lobes, Anterior,Temporal Regions
D013788 Thalamus Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain. Thalamencephalon,Thalamencephalons
D014909 Wheat Germ Agglutinins Lectins purified from the germinating seeds of common wheat (Triticum vulgare); these bind to certain carbohydrate moieties on cell surface glycoproteins and are used to identify certain cell populations and inhibit or promote some immunological or physiological activities. There are at least two isoforms of this lectin. Agglutinins, Wheat Germ,Lectins, Triticum Vulgare,Lectins, Wheat Germ,Triticum Vulgare Lectin,Triticum Vulgare Lectins,Wheat Germ Agglutinin,Wheat Germ Lectin,Wheat Germ Lectins,Wheat Germ Agglutinin Isolectin 1,Wheat Germ Agglutinin Isolectin 2,Agglutinin, Wheat Germ,Germ Agglutinin, Wheat,Germ Lectin, Wheat,Lectin, Triticum Vulgare,Lectin, Wheat Germ,Vulgare Lectin, Triticum
D018998 Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate The lectin wheatgerm agglutinin conjugated to the enzyme HORSERADISH PEROXIDASE. It is widely used for tracing neural pathways. WGA-HRP,Wheat Germ Agglutinin Horseradish Peroxidase Conjugate

Related Publications

E H Yeterian, and D N Pandya
April 1992, The Journal of comparative neurology,
E H Yeterian, and D N Pandya
March 1989, The Journal of comparative neurology,
E H Yeterian, and D N Pandya
December 1989, The Journal of comparative neurology,
E H Yeterian, and D N Pandya
May 1977, Proceedings of the Royal Society of London. Series B, Biological sciences,
E H Yeterian, and D N Pandya
July 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E H Yeterian, and D N Pandya
December 1976, The Journal of physiology,
Copied contents to your clipboard!